12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223 |
- /*
- Formatting library for C++
- Copyright (c) 2012 - present, Victor Zverovich
- Permission is hereby granted, free of charge, to any person obtaining
- a copy of this software and associated documentation files (the
- "Software"), to deal in the Software without restriction, including
- without limitation the rights to use, copy, modify, merge, publish,
- distribute, sublicense, and/or sell copies of the Software, and to
- permit persons to whom the Software is furnished to do so, subject to
- the following conditions:
- The above copyright notice and this permission notice shall be
- included in all copies or substantial portions of the Software.
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
- LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
- OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
- WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- --- Optional exception to the license ---
- As an exception, if, as a result of your compiling your source code, portions
- of this Software are embedded into a machine-executable object form of such
- source code, you may redistribute such embedded portions in such object form
- without including the above copyright and permission notices.
- */
- #ifndef FMT_FORMAT_H_
- #define FMT_FORMAT_H_
- #ifndef ASIO2_DISABLE_AUTO_HEADER_ONLY
- #ifndef FMT_HEADER_ONLY
- #define FMT_HEADER_ONLY
- #endif
- #endif
- #include <cmath> // std::signbit
- #include <cstdint> // uint32_t
- #include <cstring> // std::memcpy
- #include <limits> // std::numeric_limits
- #include <memory> // std::uninitialized_copy
- #include <stdexcept> // std::runtime_error
- #include <system_error> // std::system_error
- #ifdef __cpp_lib_bit_cast
- # include <bit> // std::bitcast
- #endif
- #include "core.h"
- #if FMT_GCC_VERSION
- # define FMT_GCC_VISIBILITY_HIDDEN __attribute__((visibility("hidden")))
- #else
- # define FMT_GCC_VISIBILITY_HIDDEN
- #endif
- #ifdef __NVCC__
- # define FMT_CUDA_VERSION (__CUDACC_VER_MAJOR__ * 100 + __CUDACC_VER_MINOR__)
- #else
- # define FMT_CUDA_VERSION 0
- #endif
- #ifdef __has_builtin
- # define FMT_HAS_BUILTIN(x) __has_builtin(x)
- #else
- # define FMT_HAS_BUILTIN(x) 0
- #endif
- #if FMT_GCC_VERSION || FMT_CLANG_VERSION
- # define FMT_NOINLINE __attribute__((noinline))
- #else
- # define FMT_NOINLINE
- #endif
- #if FMT_MSC_VERSION
- # define FMT_MSC_DEFAULT = default
- #else
- # define FMT_MSC_DEFAULT
- #endif
- #ifndef FMT_THROW
- # if FMT_EXCEPTIONS
- # if FMT_MSC_VERSION || defined(__NVCC__)
- FMT_BEGIN_NAMESPACE
- namespace detail {
- template <typename Exception> inline void do_throw(const Exception& x) {
- // Silence unreachable code warnings in MSVC and NVCC because these
- // are nearly impossible to fix in a generic code.
- volatile bool b = true;
- if (b) throw x;
- }
- } // namespace detail
- FMT_END_NAMESPACE
- # define FMT_THROW(x) detail::do_throw(x)
- # else
- # define FMT_THROW(x) throw x
- # endif
- # else
- # define FMT_THROW(x) \
- do { \
- FMT_ASSERT(false, (x).what()); \
- } while (false)
- # endif
- #endif
- #if FMT_EXCEPTIONS
- # define FMT_TRY try
- # define FMT_CATCH(x) catch (x)
- #else
- # define FMT_TRY if (true)
- # define FMT_CATCH(x) if (false)
- #endif
- #ifndef FMT_MAYBE_UNUSED
- # if FMT_HAS_CPP17_ATTRIBUTE(maybe_unused)
- # define FMT_MAYBE_UNUSED [[maybe_unused]]
- # else
- # define FMT_MAYBE_UNUSED
- # endif
- #endif
- #ifndef FMT_USE_USER_DEFINED_LITERALS
- // EDG based compilers (Intel, NVIDIA, Elbrus, etc), GCC and MSVC support UDLs.
- # if (FMT_HAS_FEATURE(cxx_user_literals) || FMT_GCC_VERSION >= 407 || \
- FMT_MSC_VERSION >= 1900) && \
- (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= /* UDL feature */ 480)
- # define FMT_USE_USER_DEFINED_LITERALS 1
- # else
- # define FMT_USE_USER_DEFINED_LITERALS 0
- # endif
- #endif
- // Defining FMT_REDUCE_INT_INSTANTIATIONS to 1, will reduce the number of
- // integer formatter template instantiations to just one by only using the
- // largest integer type. This results in a reduction in binary size but will
- // cause a decrease in integer formatting performance.
- #if !defined(FMT_REDUCE_INT_INSTANTIATIONS)
- # define FMT_REDUCE_INT_INSTANTIATIONS 0
- #endif
- // __builtin_clz is broken in clang with Microsoft CodeGen:
- // https://github.com/fmtlib/fmt/issues/519.
- #if !FMT_MSC_VERSION
- # if FMT_HAS_BUILTIN(__builtin_clz) || FMT_GCC_VERSION || FMT_ICC_VERSION
- # define FMT_BUILTIN_CLZ(n) __builtin_clz(n)
- # endif
- # if FMT_HAS_BUILTIN(__builtin_clzll) || FMT_GCC_VERSION || FMT_ICC_VERSION
- # define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n)
- # endif
- #endif
- // __builtin_ctz is broken in Intel Compiler Classic on Windows:
- // https://github.com/fmtlib/fmt/issues/2510.
- #ifndef __ICL
- # if FMT_HAS_BUILTIN(__builtin_ctz) || FMT_GCC_VERSION || FMT_ICC_VERSION || \
- defined(__NVCOMPILER)
- # define FMT_BUILTIN_CTZ(n) __builtin_ctz(n)
- # endif
- # if FMT_HAS_BUILTIN(__builtin_ctzll) || FMT_GCC_VERSION || \
- FMT_ICC_VERSION || defined(__NVCOMPILER)
- # define FMT_BUILTIN_CTZLL(n) __builtin_ctzll(n)
- # endif
- #endif
- #if FMT_MSC_VERSION
- # include <intrin.h> // _BitScanReverse[64], _BitScanForward[64], _umul128
- #endif
- // Some compilers masquerade as both MSVC and GCC-likes or otherwise support
- // __builtin_clz and __builtin_clzll, so only define FMT_BUILTIN_CLZ using the
- // MSVC intrinsics if the clz and clzll builtins are not available.
- #if FMT_MSC_VERSION && !defined(FMT_BUILTIN_CLZLL) && \
- !defined(FMT_BUILTIN_CTZLL)
- FMT_BEGIN_NAMESPACE
- namespace detail {
- // Avoid Clang with Microsoft CodeGen's -Wunknown-pragmas warning.
- # if !defined(__clang__)
- # pragma intrinsic(_BitScanForward)
- # pragma intrinsic(_BitScanReverse)
- # if defined(_WIN64)
- # pragma intrinsic(_BitScanForward64)
- # pragma intrinsic(_BitScanReverse64)
- # endif
- # endif
- inline auto clz(uint32_t x) -> int {
- unsigned long r = 0;
- _BitScanReverse(&r, x);
- FMT_ASSERT(x != 0, "");
- // Static analysis complains about using uninitialized data
- // "r", but the only way that can happen is if "x" is 0,
- // which the callers guarantee to not happen.
- FMT_MSC_WARNING(suppress : 6102)
- return 31 ^ static_cast<int>(r);
- }
- # define FMT_BUILTIN_CLZ(n) detail::clz(n)
- inline auto clzll(uint64_t x) -> int {
- unsigned long r = 0;
- # ifdef _WIN64
- _BitScanReverse64(&r, x);
- # else
- // Scan the high 32 bits.
- if (_BitScanReverse(&r, static_cast<uint32_t>(x >> 32))) return 63 ^ (r + 32);
- // Scan the low 32 bits.
- _BitScanReverse(&r, static_cast<uint32_t>(x));
- # endif
- FMT_ASSERT(x != 0, "");
- FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning.
- return 63 ^ static_cast<int>(r);
- }
- # define FMT_BUILTIN_CLZLL(n) detail::clzll(n)
- inline auto ctz(uint32_t x) -> int {
- unsigned long r = 0;
- _BitScanForward(&r, x);
- FMT_ASSERT(x != 0, "");
- FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning.
- return static_cast<int>(r);
- }
- # define FMT_BUILTIN_CTZ(n) detail::ctz(n)
- inline auto ctzll(uint64_t x) -> int {
- unsigned long r = 0;
- FMT_ASSERT(x != 0, "");
- FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning.
- # ifdef _WIN64
- _BitScanForward64(&r, x);
- # else
- // Scan the low 32 bits.
- if (_BitScanForward(&r, static_cast<uint32_t>(x))) return static_cast<int>(r);
- // Scan the high 32 bits.
- _BitScanForward(&r, static_cast<uint32_t>(x >> 32));
- r += 32;
- # endif
- return static_cast<int>(r);
- }
- # define FMT_BUILTIN_CTZLL(n) detail::ctzll(n)
- } // namespace detail
- FMT_END_NAMESPACE
- #endif
- FMT_BEGIN_NAMESPACE
- namespace detail {
- FMT_CONSTEXPR inline void abort_fuzzing_if(bool condition) {
- ignore_unused(condition);
- #ifdef FMT_FUZZ
- if (condition) throw std::runtime_error("fuzzing limit reached");
- #endif
- }
- template <typename CharT, CharT... C> struct string_literal {
- static constexpr CharT value[sizeof...(C)] = {C...};
- constexpr operator basic_string_view<CharT>() const {
- return {value, sizeof...(C)};
- }
- };
- #if FMT_CPLUSPLUS < 201703L
- template <typename CharT, CharT... C>
- constexpr CharT string_literal<CharT, C...>::value[sizeof...(C)];
- #endif
- template <typename Streambuf> class formatbuf : public Streambuf {
- private:
- using char_type = typename Streambuf::char_type;
- using streamsize = decltype(std::declval<Streambuf>().sputn(nullptr, 0));
- using int_type = typename Streambuf::int_type;
- using traits_type = typename Streambuf::traits_type;
- buffer<char_type>& buffer_;
- public:
- explicit formatbuf(buffer<char_type>& buf) : buffer_(buf) {}
- protected:
- // The put area is always empty. This makes the implementation simpler and has
- // the advantage that the streambuf and the buffer are always in sync and
- // sputc never writes into uninitialized memory. A disadvantage is that each
- // call to sputc always results in a (virtual) call to overflow. There is no
- // disadvantage here for sputn since this always results in a call to xsputn.
- auto overflow(int_type ch) -> int_type override {
- if (!traits_type::eq_int_type(ch, traits_type::eof()))
- buffer_.push_back(static_cast<char_type>(ch));
- return ch;
- }
- auto xsputn(const char_type* s, streamsize count) -> streamsize override {
- buffer_.append(s, s + count);
- return count;
- }
- };
- // Implementation of std::bit_cast for pre-C++20.
- template <typename To, typename From, FMT_ENABLE_IF(sizeof(To) == sizeof(From))>
- FMT_CONSTEXPR20 auto bit_cast(const From& from) -> To {
- #ifdef __cpp_lib_bit_cast
- if (is_constant_evaluated()) return std::bit_cast<To>(from);
- #endif
- auto to = To();
- // The cast suppresses a bogus -Wclass-memaccess on GCC.
- std::memcpy(static_cast<void*>(&to), &from, sizeof(to));
- return to;
- }
- inline auto is_big_endian() -> bool {
- #ifdef _WIN32
- return false;
- #elif defined(__BIG_ENDIAN__)
- return true;
- #elif defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__)
- return __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__;
- #else
- struct bytes {
- char data[sizeof(int)];
- };
- return bit_cast<bytes>(1).data[0] == 0;
- #endif
- }
- class uint128_fallback {
- private:
- uint64_t lo_, hi_;
- friend uint128_fallback umul128(uint64_t x, uint64_t y) noexcept;
- public:
- constexpr uint128_fallback(uint64_t hi, uint64_t lo) : lo_(lo), hi_(hi) {}
- constexpr uint128_fallback(uint64_t value = 0) : lo_(value), hi_(0) {}
- constexpr uint64_t high() const noexcept { return hi_; }
- constexpr uint64_t low() const noexcept { return lo_; }
- template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
- constexpr explicit operator T() const {
- return static_cast<T>(lo_);
- }
- friend constexpr auto operator==(const uint128_fallback& lhs,
- const uint128_fallback& rhs) -> bool {
- return lhs.hi_ == rhs.hi_ && lhs.lo_ == rhs.lo_;
- }
- friend constexpr auto operator!=(const uint128_fallback& lhs,
- const uint128_fallback& rhs) -> bool {
- return !(lhs == rhs);
- }
- friend constexpr auto operator>(const uint128_fallback& lhs,
- const uint128_fallback& rhs) -> bool {
- return lhs.hi_ != rhs.hi_ ? lhs.hi_ > rhs.hi_ : lhs.lo_ > rhs.lo_;
- }
- friend constexpr auto operator|(const uint128_fallback& lhs,
- const uint128_fallback& rhs)
- -> uint128_fallback {
- return {lhs.hi_ | rhs.hi_, lhs.lo_ | rhs.lo_};
- }
- friend constexpr auto operator&(const uint128_fallback& lhs,
- const uint128_fallback& rhs)
- -> uint128_fallback {
- return {lhs.hi_ & rhs.hi_, lhs.lo_ & rhs.lo_};
- }
- friend auto operator+(const uint128_fallback& lhs,
- const uint128_fallback& rhs) -> uint128_fallback {
- auto result = uint128_fallback(lhs);
- result += rhs;
- return result;
- }
- friend auto operator*(const uint128_fallback& lhs, uint32_t rhs)
- -> uint128_fallback {
- FMT_ASSERT(lhs.hi_ == 0, "");
- uint64_t hi = (lhs.lo_ >> 32) * rhs;
- uint64_t lo = (lhs.lo_ & ~uint32_t()) * rhs;
- uint64_t new_lo = (hi << 32) + lo;
- return {(hi >> 32) + (new_lo < lo ? 1 : 0), new_lo};
- }
- friend auto operator-(const uint128_fallback& lhs, uint64_t rhs)
- -> uint128_fallback {
- return {lhs.hi_ - (lhs.lo_ < rhs ? 1 : 0), lhs.lo_ - rhs};
- }
- FMT_CONSTEXPR auto operator>>(int shift) const -> uint128_fallback {
- if (shift == 64) return {0, hi_};
- if (shift > 64) return uint128_fallback(0, hi_) >> (shift - 64);
- return {hi_ >> shift, (hi_ << (64 - shift)) | (lo_ >> shift)};
- }
- FMT_CONSTEXPR auto operator<<(int shift) const -> uint128_fallback {
- if (shift == 64) return {lo_, 0};
- if (shift > 64) return uint128_fallback(lo_, 0) << (shift - 64);
- return {hi_ << shift | (lo_ >> (64 - shift)), (lo_ << shift)};
- }
- FMT_CONSTEXPR auto operator>>=(int shift) -> uint128_fallback& {
- return *this = *this >> shift;
- }
- FMT_CONSTEXPR void operator+=(uint128_fallback n) {
- uint64_t new_lo = lo_ + n.lo_;
- uint64_t new_hi = hi_ + n.hi_ + (new_lo < lo_ ? 1 : 0);
- FMT_ASSERT(new_hi >= hi_, "");
- lo_ = new_lo;
- hi_ = new_hi;
- }
- FMT_CONSTEXPR20 uint128_fallback& operator+=(uint64_t n) noexcept {
- if (is_constant_evaluated()) {
- lo_ += n;
- hi_ += (lo_ < n ? 1 : 0);
- return *this;
- }
- #if FMT_HAS_BUILTIN(__builtin_addcll) && !defined(__ibmxl__)
- unsigned long long carry;
- lo_ = __builtin_addcll(lo_, n, 0, &carry);
- hi_ += carry;
- #elif FMT_HAS_BUILTIN(__builtin_ia32_addcarryx_u64) && !defined(__ibmxl__)
- unsigned long long result;
- auto carry = __builtin_ia32_addcarryx_u64(0, lo_, n, &result);
- lo_ = result;
- hi_ += carry;
- #elif defined(_MSC_VER) && defined(_M_X64)
- auto carry = _addcarry_u64(0, lo_, n, &lo_);
- _addcarry_u64(carry, hi_, 0, &hi_);
- #else
- lo_ += n;
- hi_ += (lo_ < n ? 1 : 0);
- #endif
- return *this;
- }
- };
- using uint128_t = conditional_t<FMT_USE_INT128, uint128_opt, uint128_fallback>;
- #ifdef UINTPTR_MAX
- using uintptr_t = ::uintptr_t;
- #else
- using uintptr_t = uint128_t;
- #endif
- // Returns the largest possible value for type T. Same as
- // std::numeric_limits<T>::max() but shorter and not affected by the max macro.
- template <typename T> constexpr auto max_value() -> T {
- return (std::numeric_limits<T>::max)();
- }
- template <typename T> constexpr auto num_bits() -> int {
- return std::numeric_limits<T>::digits;
- }
- // std::numeric_limits<T>::digits may return 0 for 128-bit ints.
- template <> constexpr auto num_bits<int128_opt>() -> int { return 128; }
- template <> constexpr auto num_bits<uint128_t>() -> int { return 128; }
- // A heterogeneous bit_cast used for converting 96-bit long double to uint128_t
- // and 128-bit pointers to uint128_fallback.
- template <typename To, typename From, FMT_ENABLE_IF(sizeof(To) > sizeof(From))>
- inline auto bit_cast(const From& from) -> To {
- constexpr auto size = static_cast<int>(sizeof(From) / sizeof(unsigned));
- struct data_t {
- unsigned value[static_cast<unsigned>(size)];
- } data = bit_cast<data_t>(from);
- auto result = To();
- if (const_check(is_big_endian())) {
- for (int i = 0; i < size; ++i)
- result = (result << num_bits<unsigned>()) | data.value[i];
- } else {
- for (int i = size - 1; i >= 0; --i)
- result = (result << num_bits<unsigned>()) | data.value[i];
- }
- return result;
- }
- FMT_INLINE void assume(bool condition) {
- (void)condition;
- #if FMT_HAS_BUILTIN(__builtin_assume) && !FMT_ICC_VERSION
- __builtin_assume(condition);
- #endif
- }
- // An approximation of iterator_t for pre-C++20 systems.
- template <typename T>
- using iterator_t = decltype(std::begin(std::declval<T&>()));
- template <typename T> using sentinel_t = decltype(std::end(std::declval<T&>()));
- // A workaround for std::string not having mutable data() until C++17.
- template <typename Char>
- inline auto get_data(std::basic_string<Char>& s) -> Char* {
- return &s[0];
- }
- template <typename Container>
- inline auto get_data(Container& c) -> typename Container::value_type* {
- return c.data();
- }
- #if defined(_SECURE_SCL) && _SECURE_SCL
- // Make a checked iterator to avoid MSVC warnings.
- template <typename T> using checked_ptr = stdext::checked_array_iterator<T*>;
- template <typename T>
- constexpr auto make_checked(T* p, size_t size) -> checked_ptr<T> {
- return {p, size};
- }
- #else
- template <typename T> using checked_ptr = T*;
- template <typename T> constexpr auto make_checked(T* p, size_t) -> T* {
- return p;
- }
- #endif
- // Attempts to reserve space for n extra characters in the output range.
- // Returns a pointer to the reserved range or a reference to it.
- template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)>
- #if FMT_CLANG_VERSION >= 307 && !FMT_ICC_VERSION
- __attribute__((no_sanitize("undefined")))
- #endif
- inline auto
- reserve(std::back_insert_iterator<Container> it, size_t n)
- -> checked_ptr<typename Container::value_type> {
- Container& c = get_container(it);
- size_t size = c.size();
- c.resize(size + n);
- return make_checked(get_data(c) + size, n);
- }
- template <typename T>
- inline auto reserve(buffer_appender<T> it, size_t n) -> buffer_appender<T> {
- buffer<T>& buf = get_container(it);
- buf.try_reserve(buf.size() + n);
- return it;
- }
- template <typename Iterator>
- constexpr auto reserve(Iterator& it, size_t) -> Iterator& {
- return it;
- }
- template <typename OutputIt>
- using reserve_iterator =
- remove_reference_t<decltype(reserve(std::declval<OutputIt&>(), 0))>;
- template <typename T, typename OutputIt>
- constexpr auto to_pointer(OutputIt, size_t) -> T* {
- return nullptr;
- }
- template <typename T> auto to_pointer(buffer_appender<T> it, size_t n) -> T* {
- buffer<T>& buf = get_container(it);
- auto size = buf.size();
- if (buf.capacity() < size + n) return nullptr;
- buf.try_resize(size + n);
- return buf.data() + size;
- }
- template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)>
- inline auto base_iterator(std::back_insert_iterator<Container>& it,
- checked_ptr<typename Container::value_type>)
- -> std::back_insert_iterator<Container> {
- return it;
- }
- template <typename Iterator>
- constexpr auto base_iterator(Iterator, Iterator it) -> Iterator {
- return it;
- }
- // <algorithm> is spectacularly slow to compile in C++20 so use a simple fill_n
- // instead (#1998).
- template <typename OutputIt, typename Size, typename T>
- FMT_CONSTEXPR auto fill_n(OutputIt out, Size count, const T& value)
- -> OutputIt {
- for (Size i = 0; i < count; ++i) *out++ = value;
- return out;
- }
- template <typename T, typename Size>
- FMT_CONSTEXPR20 auto fill_n(T* out, Size count, char value) -> T* {
- if (is_constant_evaluated()) {
- return fill_n<T*, Size, T>(out, count, value);
- }
- std::memset(out, value, to_unsigned(count));
- return out + count;
- }
- #ifdef __cpp_char8_t
- using char8_type = char8_t;
- #else
- enum char8_type : unsigned char {};
- #endif
- template <typename OutChar, typename InputIt, typename OutputIt>
- FMT_CONSTEXPR FMT_NOINLINE auto copy_str_noinline(InputIt begin, InputIt end,
- OutputIt out) -> OutputIt {
- return copy_str<OutChar>(begin, end, out);
- }
- // A public domain branchless UTF-8 decoder by Christopher Wellons:
- // https://github.com/skeeto/branchless-utf8
- /* Decode the next character, c, from s, reporting errors in e.
- *
- * Since this is a branchless decoder, four bytes will be read from the
- * buffer regardless of the actual length of the next character. This
- * means the buffer _must_ have at least three bytes of zero padding
- * following the end of the data stream.
- *
- * Errors are reported in e, which will be non-zero if the parsed
- * character was somehow invalid: invalid byte sequence, non-canonical
- * encoding, or a surrogate half.
- *
- * The function returns a pointer to the next character. When an error
- * occurs, this pointer will be a guess that depends on the particular
- * error, but it will always advance at least one byte.
- */
- FMT_CONSTEXPR inline auto utf8_decode(const char* s, uint32_t* c, int* e)
- -> const char* {
- constexpr const int masks[] = {0x00, 0x7f, 0x1f, 0x0f, 0x07};
- constexpr const uint32_t mins[] = {4194304, 0, 128, 2048, 65536};
- constexpr const int shiftc[] = {0, 18, 12, 6, 0};
- constexpr const int shifte[] = {0, 6, 4, 2, 0};
- int len = code_point_length_impl(*s);
- // Compute the pointer to the next character early so that the next
- // iteration can start working on the next character. Neither Clang
- // nor GCC figure out this reordering on their own.
- const char* next = s + len + !len;
- using uchar = unsigned char;
- // Assume a four-byte character and load four bytes. Unused bits are
- // shifted out.
- *c = uint32_t(uchar(s[0]) & masks[len]) << 18;
- *c |= uint32_t(uchar(s[1]) & 0x3f) << 12;
- *c |= uint32_t(uchar(s[2]) & 0x3f) << 6;
- *c |= uint32_t(uchar(s[3]) & 0x3f) << 0;
- *c >>= shiftc[len];
- // Accumulate the various error conditions.
- *e = (*c < mins[len]) << 6; // non-canonical encoding
- *e |= ((*c >> 11) == 0x1b) << 7; // surrogate half?
- *e |= (*c > 0x10FFFF) << 8; // out of range?
- *e |= (uchar(s[1]) & 0xc0) >> 2;
- *e |= (uchar(s[2]) & 0xc0) >> 4;
- *e |= uchar(s[3]) >> 6;
- *e ^= 0x2a; // top two bits of each tail byte correct?
- *e >>= shifte[len];
- return next;
- }
- constexpr uint32_t invalid_code_point = ~uint32_t();
- // Invokes f(cp, sv) for every code point cp in s with sv being the string view
- // corresponding to the code point. cp is invalid_code_point on error.
- template <typename F>
- FMT_CONSTEXPR void for_each_codepoint(string_view s, F f) {
- auto decode = [f](const char* buf_ptr, const char* ptr) {
- auto cp = uint32_t();
- auto error = 0;
- auto end = utf8_decode(buf_ptr, &cp, &error);
- bool result = f(error ? invalid_code_point : cp,
- string_view(ptr, error ? 1 : to_unsigned(end - buf_ptr)));
- return result ? (error ? buf_ptr + 1 : end) : nullptr;
- };
- auto p = s.data();
- const size_t block_size = 4; // utf8_decode always reads blocks of 4 chars.
- if (s.size() >= block_size) {
- for (auto end = p + s.size() - block_size + 1; p < end;) {
- p = decode(p, p);
- if (!p) return;
- }
- }
- if (auto num_chars_left = s.data() + s.size() - p) {
- char buf[2 * block_size - 1] = {};
- copy_str<char>(p, p + num_chars_left, buf);
- const char* buf_ptr = buf;
- do {
- auto end = decode(buf_ptr, p);
- if (!end) return;
- p += end - buf_ptr;
- buf_ptr = end;
- } while (buf_ptr - buf < num_chars_left);
- }
- }
- template <typename Char>
- inline auto compute_width(basic_string_view<Char> s) -> size_t {
- return s.size();
- }
- // Computes approximate display width of a UTF-8 string.
- FMT_CONSTEXPR inline size_t compute_width(string_view s) {
- size_t num_code_points = 0;
- // It is not a lambda for compatibility with C++14.
- struct count_code_points {
- size_t* count;
- FMT_CONSTEXPR auto operator()(uint32_t cp, string_view) const -> bool {
- *count += detail::to_unsigned(
- 1 +
- (cp >= 0x1100 &&
- (cp <= 0x115f || // Hangul Jamo init. consonants
- cp == 0x2329 || // LEFT-POINTING ANGLE BRACKET
- cp == 0x232a || // RIGHT-POINTING ANGLE BRACKET
- // CJK ... Yi except IDEOGRAPHIC HALF FILL SPACE:
- (cp >= 0x2e80 && cp <= 0xa4cf && cp != 0x303f) ||
- (cp >= 0xac00 && cp <= 0xd7a3) || // Hangul Syllables
- (cp >= 0xf900 && cp <= 0xfaff) || // CJK Compatibility Ideographs
- (cp >= 0xfe10 && cp <= 0xfe19) || // Vertical Forms
- (cp >= 0xfe30 && cp <= 0xfe6f) || // CJK Compatibility Forms
- (cp >= 0xff00 && cp <= 0xff60) || // Fullwidth Forms
- (cp >= 0xffe0 && cp <= 0xffe6) || // Fullwidth Forms
- (cp >= 0x20000 && cp <= 0x2fffd) || // CJK
- (cp >= 0x30000 && cp <= 0x3fffd) ||
- // Miscellaneous Symbols and Pictographs + Emoticons:
- (cp >= 0x1f300 && cp <= 0x1f64f) ||
- // Supplemental Symbols and Pictographs:
- (cp >= 0x1f900 && cp <= 0x1f9ff))));
- return true;
- }
- };
- for_each_codepoint(s, count_code_points{&num_code_points});
- return num_code_points;
- }
- inline auto compute_width(basic_string_view<char8_type> s) -> size_t {
- return compute_width(
- string_view(reinterpret_cast<const char*>(s.data()), s.size()));
- }
- template <typename Char>
- inline auto code_point_index(basic_string_view<Char> s, size_t n) -> size_t {
- size_t size = s.size();
- return n < size ? n : size;
- }
- // Calculates the index of the nth code point in a UTF-8 string.
- inline auto code_point_index(string_view s, size_t n) -> size_t {
- const char* data = s.data();
- size_t num_code_points = 0;
- for (size_t i = 0, size = s.size(); i != size; ++i) {
- if ((data[i] & 0xc0) != 0x80 && ++num_code_points > n) return i;
- }
- return s.size();
- }
- inline auto code_point_index(basic_string_view<char8_type> s, size_t n)
- -> size_t {
- return code_point_index(
- string_view(reinterpret_cast<const char*>(s.data()), s.size()), n);
- }
- #ifndef FMT_USE_FLOAT128
- # ifdef __SIZEOF_FLOAT128__
- # define FMT_USE_FLOAT128 1
- # else
- # define FMT_USE_FLOAT128 0
- # endif
- #endif
- #if FMT_USE_FLOAT128
- using float128 = __float128;
- #else
- using float128 = void;
- #endif
- template <typename T> using is_float128 = std::is_same<T, float128>;
- template <typename T>
- using is_floating_point =
- bool_constant<std::is_floating_point<T>::value || is_float128<T>::value>;
- template <typename T, bool = std::is_floating_point<T>::value>
- struct is_fast_float : bool_constant<std::numeric_limits<T>::is_iec559 &&
- sizeof(T) <= sizeof(double)> {};
- template <typename T> struct is_fast_float<T, false> : std::false_type {};
- template <typename T>
- using is_double_double = bool_constant<std::numeric_limits<T>::digits == 106>;
- #ifndef FMT_USE_FULL_CACHE_DRAGONBOX
- # define FMT_USE_FULL_CACHE_DRAGONBOX 0
- #endif
- template <typename T>
- template <typename U>
- void buffer<T>::append(const U* begin, const U* end) {
- while (begin != end) {
- auto count = to_unsigned(end - begin);
- try_reserve(size_ + count);
- auto free_cap = capacity_ - size_;
- if (free_cap < count) count = free_cap;
- std::uninitialized_copy_n(begin, count, make_checked(ptr_ + size_, count));
- size_ += count;
- begin += count;
- }
- }
- template <typename T, typename Enable = void>
- struct is_locale : std::false_type {};
- template <typename T>
- struct is_locale<T, void_t<decltype(T::classic())>> : std::true_type {};
- } // namespace detail
- FMT_MODULE_EXPORT_BEGIN
- // The number of characters to store in the basic_memory_buffer object itself
- // to avoid dynamic memory allocation.
- enum { inline_buffer_size = 500 };
- /**
- \rst
- A dynamically growing memory buffer for trivially copyable/constructible types
- with the first ``SIZE`` elements stored in the object itself.
- You can use the ``memory_buffer`` type alias for ``char`` instead.
- **Example**::
- auto out = fmt::memory_buffer();
- format_to(std::back_inserter(out), "The answer is {}.", 42);
- This will append the following output to the ``out`` object:
- .. code-block:: none
- The answer is 42.
- The output can be converted to an ``std::string`` with ``to_string(out)``.
- \endrst
- */
- template <typename T, size_t SIZE = inline_buffer_size,
- typename Allocator = std::allocator<T>>
- class basic_memory_buffer final : public detail::buffer<T> {
- private:
- T store_[SIZE];
- // Don't inherit from Allocator avoid generating type_info for it.
- Allocator alloc_;
- // Deallocate memory allocated by the buffer.
- FMT_CONSTEXPR20 void deallocate() {
- T* data = this->data();
- if (data != store_) alloc_.deallocate(data, this->capacity());
- }
- protected:
- FMT_CONSTEXPR20 void grow(size_t size) override;
- public:
- using value_type = T;
- using const_reference = const T&;
- FMT_CONSTEXPR20 explicit basic_memory_buffer(
- const Allocator& alloc = Allocator())
- : alloc_(alloc) {
- this->set(store_, SIZE);
- if (detail::is_constant_evaluated()) detail::fill_n(store_, SIZE, T());
- }
- FMT_CONSTEXPR20 ~basic_memory_buffer() { deallocate(); }
- private:
- // Move data from other to this buffer.
- FMT_CONSTEXPR20 void move(basic_memory_buffer& other) {
- alloc_ = std::move(other.alloc_);
- T* data = other.data();
- size_t size = other.size(), capacity = other.capacity();
- if (data == other.store_) {
- this->set(store_, capacity);
- detail::copy_str<T>(other.store_, other.store_ + size,
- detail::make_checked(store_, capacity));
- } else {
- this->set(data, capacity);
- // Set pointer to the inline array so that delete is not called
- // when deallocating.
- other.set(other.store_, 0);
- other.clear();
- }
- this->resize(size);
- }
- public:
- /**
- \rst
- Constructs a :class:`fmt::basic_memory_buffer` object moving the content
- of the other object to it.
- \endrst
- */
- FMT_CONSTEXPR20 basic_memory_buffer(basic_memory_buffer&& other) noexcept {
- move(other);
- }
- /**
- \rst
- Moves the content of the other ``basic_memory_buffer`` object to this one.
- \endrst
- */
- auto operator=(basic_memory_buffer&& other) noexcept -> basic_memory_buffer& {
- FMT_ASSERT(this != &other, "");
- deallocate();
- move(other);
- return *this;
- }
- // Returns a copy of the allocator associated with this buffer.
- auto get_allocator() const -> Allocator { return alloc_; }
- /**
- Resizes the buffer to contain *count* elements. If T is a POD type new
- elements may not be initialized.
- */
- FMT_CONSTEXPR20 void resize(size_t count) { this->try_resize(count); }
- /** Increases the buffer capacity to *new_capacity*. */
- void reserve(size_t new_capacity) { this->try_reserve(new_capacity); }
- // Directly append data into the buffer
- using detail::buffer<T>::append;
- template <typename ContiguousRange>
- void append(const ContiguousRange& range) {
- append(range.data(), range.data() + range.size());
- }
- };
- template <typename T, size_t SIZE, typename Allocator>
- FMT_CONSTEXPR20 void basic_memory_buffer<T, SIZE, Allocator>::grow(
- size_t size) {
- detail::abort_fuzzing_if(size > 5000);
- const size_t max_size = std::allocator_traits<Allocator>::max_size(alloc_);
- size_t old_capacity = this->capacity();
- size_t new_capacity = old_capacity + old_capacity / 2;
- if (size > new_capacity)
- new_capacity = size;
- else if (new_capacity > max_size)
- new_capacity = size > max_size ? size : max_size;
- T* old_data = this->data();
- T* new_data =
- std::allocator_traits<Allocator>::allocate(alloc_, new_capacity);
- // The following code doesn't throw, so the raw pointer above doesn't leak.
- std::uninitialized_copy(old_data, old_data + this->size(),
- detail::make_checked(new_data, new_capacity));
- this->set(new_data, new_capacity);
- // deallocate must not throw according to the standard, but even if it does,
- // the buffer already uses the new storage and will deallocate it in
- // destructor.
- if (old_data != store_) alloc_.deallocate(old_data, old_capacity);
- }
- using memory_buffer = basic_memory_buffer<char>;
- template <typename T, size_t SIZE, typename Allocator>
- struct is_contiguous<basic_memory_buffer<T, SIZE, Allocator>> : std::true_type {
- };
- namespace detail {
- #ifdef _WIN32
- FMT_API bool write_console(std::FILE* f, string_view text);
- #endif
- FMT_API void print(std::FILE*, string_view);
- } // namespace detail
- /** A formatting error such as invalid format string. */
- FMT_CLASS_API
- class FMT_API format_error : public std::runtime_error {
- public:
- explicit format_error(const char* message) : std::runtime_error(message) {}
- explicit format_error(const std::string& message)
- : std::runtime_error(message) {}
- format_error(const format_error&) = default;
- format_error& operator=(const format_error&) = default;
- format_error(format_error&&) = default;
- format_error& operator=(format_error&&) = default;
- ~format_error() noexcept override FMT_MSC_DEFAULT;
- };
- namespace detail_exported {
- #if FMT_USE_NONTYPE_TEMPLATE_ARGS
- template <typename Char, size_t N> struct fixed_string {
- constexpr fixed_string(const Char (&str)[N]) {
- detail::copy_str<Char, const Char*, Char*>(static_cast<const Char*>(str),
- str + N, data);
- }
- Char data[N] = {};
- };
- #endif
- // Converts a compile-time string to basic_string_view.
- template <typename Char, size_t N>
- constexpr auto compile_string_to_view(const Char (&s)[N])
- -> basic_string_view<Char> {
- // Remove trailing NUL character if needed. Won't be present if this is used
- // with a raw character array (i.e. not defined as a string).
- return {s, N - (std::char_traits<Char>::to_int_type(s[N - 1]) == 0 ? 1 : 0)};
- }
- template <typename Char>
- constexpr auto compile_string_to_view(detail::std_string_view<Char> s)
- -> basic_string_view<Char> {
- return {s.data(), s.size()};
- }
- } // namespace detail_exported
- FMT_BEGIN_DETAIL_NAMESPACE
- template <typename T> struct is_integral : std::is_integral<T> {};
- template <> struct is_integral<int128_opt> : std::true_type {};
- template <> struct is_integral<uint128_t> : std::true_type {};
- template <typename T>
- using is_signed =
- std::integral_constant<bool, std::numeric_limits<T>::is_signed ||
- std::is_same<T, int128_opt>::value>;
- // Returns true if value is negative, false otherwise.
- // Same as `value < 0` but doesn't produce warnings if T is an unsigned type.
- template <typename T, FMT_ENABLE_IF(is_signed<T>::value)>
- constexpr auto is_negative(T value) -> bool {
- return value < 0;
- }
- template <typename T, FMT_ENABLE_IF(!is_signed<T>::value)>
- constexpr auto is_negative(T) -> bool {
- return false;
- }
- template <typename T>
- FMT_CONSTEXPR auto is_supported_floating_point(T) -> bool {
- if (std::is_same<T, float>()) return FMT_USE_FLOAT;
- if (std::is_same<T, double>()) return FMT_USE_DOUBLE;
- if (std::is_same<T, long double>()) return FMT_USE_LONG_DOUBLE;
- return true;
- }
- // Smallest of uint32_t, uint64_t, uint128_t that is large enough to
- // represent all values of an integral type T.
- template <typename T>
- using uint32_or_64_or_128_t =
- conditional_t<num_bits<T>() <= 32 && !FMT_REDUCE_INT_INSTANTIATIONS,
- uint32_t,
- conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>>;
- template <typename T>
- using uint64_or_128_t = conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>;
- #define FMT_POWERS_OF_10(factor) \
- factor * 10, (factor)*100, (factor)*1000, (factor)*10000, (factor)*100000, \
- (factor)*1000000, (factor)*10000000, (factor)*100000000, \
- (factor)*1000000000
- // Converts value in the range [0, 100) to a string.
- constexpr const char* digits2(size_t value) {
- // GCC generates slightly better code when value is pointer-size.
- return &"0001020304050607080910111213141516171819"
- "2021222324252627282930313233343536373839"
- "4041424344454647484950515253545556575859"
- "6061626364656667686970717273747576777879"
- "8081828384858687888990919293949596979899"[value * 2];
- }
- // Sign is a template parameter to workaround a bug in gcc 4.8.
- template <typename Char, typename Sign> constexpr Char sign(Sign s) {
- #if !FMT_GCC_VERSION || FMT_GCC_VERSION >= 604
- static_assert(std::is_same<Sign, sign_t>::value, "");
- #endif
- return static_cast<Char>("\0-+ "[s]);
- }
- template <typename T> FMT_CONSTEXPR auto count_digits_fallback(T n) -> int {
- int count = 1;
- for (;;) {
- // Integer division is slow so do it for a group of four digits instead
- // of for every digit. The idea comes from the talk by Alexandrescu
- // "Three Optimization Tips for C++". See speed-test for a comparison.
- if (n < 10) return count;
- if (n < 100) return count + 1;
- if (n < 1000) return count + 2;
- if (n < 10000) return count + 3;
- n /= 10000u;
- count += 4;
- }
- }
- #if FMT_USE_INT128
- FMT_CONSTEXPR inline auto count_digits(uint128_opt n) -> int {
- return count_digits_fallback(n);
- }
- #endif
- #ifdef FMT_BUILTIN_CLZLL
- // It is a separate function rather than a part of count_digits to workaround
- // the lack of static constexpr in constexpr functions.
- inline auto do_count_digits(uint64_t n) -> int {
- // This has comparable performance to the version by Kendall Willets
- // (https://github.com/fmtlib/format-benchmark/blob/master/digits10)
- // but uses smaller tables.
- // Maps bsr(n) to ceil(log10(pow(2, bsr(n) + 1) - 1)).
- static constexpr uint8_t bsr2log10[] = {
- 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5,
- 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10,
- 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15,
- 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20};
- auto t = bsr2log10[FMT_BUILTIN_CLZLL(n | 1) ^ 63];
- static constexpr const uint64_t zero_or_powers_of_10[] = {
- 0, 0, FMT_POWERS_OF_10(1U), FMT_POWERS_OF_10(1000000000ULL),
- 10000000000000000000ULL};
- return t - (n < zero_or_powers_of_10[t]);
- }
- #endif
- // Returns the number of decimal digits in n. Leading zeros are not counted
- // except for n == 0 in which case count_digits returns 1.
- FMT_CONSTEXPR20 inline auto count_digits(uint64_t n) -> int {
- #ifdef FMT_BUILTIN_CLZLL
- if (!is_constant_evaluated()) {
- return do_count_digits(n);
- }
- #endif
- return count_digits_fallback(n);
- }
- // Counts the number of digits in n. BITS = log2(radix).
- template <int BITS, typename UInt>
- FMT_CONSTEXPR auto count_digits(UInt n) -> int {
- #ifdef FMT_BUILTIN_CLZ
- if (!is_constant_evaluated() && num_bits<UInt>() == 32)
- return (FMT_BUILTIN_CLZ(static_cast<uint32_t>(n) | 1) ^ 31) / BITS + 1;
- #endif
- // Lambda avoids unreachable code warnings from NVHPC.
- return [](UInt m) {
- int num_digits = 0;
- do {
- ++num_digits;
- } while ((m >>= BITS) != 0);
- return num_digits;
- }(n);
- }
- #ifdef FMT_BUILTIN_CLZ
- // It is a separate function rather than a part of count_digits to workaround
- // the lack of static constexpr in constexpr functions.
- FMT_INLINE auto do_count_digits(uint32_t n) -> int {
- // An optimization by Kendall Willets from https://bit.ly/3uOIQrB.
- // This increments the upper 32 bits (log10(T) - 1) when >= T is added.
- # define FMT_INC(T) (((sizeof(# T) - 1ull) << 32) - T)
- static constexpr uint64_t table[] = {
- FMT_INC(0), FMT_INC(0), FMT_INC(0), // 8
- FMT_INC(10), FMT_INC(10), FMT_INC(10), // 64
- FMT_INC(100), FMT_INC(100), FMT_INC(100), // 512
- FMT_INC(1000), FMT_INC(1000), FMT_INC(1000), // 4096
- FMT_INC(10000), FMT_INC(10000), FMT_INC(10000), // 32k
- FMT_INC(100000), FMT_INC(100000), FMT_INC(100000), // 256k
- FMT_INC(1000000), FMT_INC(1000000), FMT_INC(1000000), // 2048k
- FMT_INC(10000000), FMT_INC(10000000), FMT_INC(10000000), // 16M
- FMT_INC(100000000), FMT_INC(100000000), FMT_INC(100000000), // 128M
- FMT_INC(1000000000), FMT_INC(1000000000), FMT_INC(1000000000), // 1024M
- FMT_INC(1000000000), FMT_INC(1000000000) // 4B
- };
- auto inc = table[FMT_BUILTIN_CLZ(n | 1) ^ 31];
- return static_cast<int>((n + inc) >> 32);
- }
- #endif
- // Optional version of count_digits for better performance on 32-bit platforms.
- FMT_CONSTEXPR20 inline auto count_digits(uint32_t n) -> int {
- #ifdef FMT_BUILTIN_CLZ
- if (!is_constant_evaluated()) {
- return do_count_digits(n);
- }
- #endif
- return count_digits_fallback(n);
- }
- template <typename Int> constexpr auto digits10() noexcept -> int {
- return std::numeric_limits<Int>::digits10;
- }
- template <> constexpr auto digits10<int128_opt>() noexcept -> int { return 38; }
- template <> constexpr auto digits10<uint128_t>() noexcept -> int { return 38; }
- template <typename Char> struct thousands_sep_result {
- std::string grouping;
- Char thousands_sep;
- };
- template <typename Char>
- FMT_API auto thousands_sep_impl(locale_ref loc) -> thousands_sep_result<Char>;
- template <typename Char>
- inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<Char> {
- auto result = thousands_sep_impl<char>(loc);
- return {result.grouping, Char(result.thousands_sep)};
- }
- template <>
- inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<wchar_t> {
- return thousands_sep_impl<wchar_t>(loc);
- }
- template <typename Char>
- FMT_API auto decimal_point_impl(locale_ref loc) -> Char;
- template <typename Char> inline auto decimal_point(locale_ref loc) -> Char {
- return Char(decimal_point_impl<char>(loc));
- }
- template <> inline auto decimal_point(locale_ref loc) -> wchar_t {
- return decimal_point_impl<wchar_t>(loc);
- }
- // Compares two characters for equality.
- template <typename Char> auto equal2(const Char* lhs, const char* rhs) -> bool {
- return lhs[0] == Char(rhs[0]) && lhs[1] == Char(rhs[1]);
- }
- inline auto equal2(const char* lhs, const char* rhs) -> bool {
- return memcmp(lhs, rhs, 2) == 0;
- }
- // Copies two characters from src to dst.
- template <typename Char>
- FMT_CONSTEXPR20 FMT_INLINE void copy2(Char* dst, const char* src) {
- if (!is_constant_evaluated() && sizeof(Char) == sizeof(char)) {
- memcpy(dst, src, 2);
- return;
- }
- *dst++ = static_cast<Char>(*src++);
- *dst = static_cast<Char>(*src);
- }
- template <typename Iterator> struct format_decimal_result {
- Iterator begin;
- Iterator end;
- };
- // Formats a decimal unsigned integer value writing into out pointing to a
- // buffer of specified size. The caller must ensure that the buffer is large
- // enough.
- template <typename Char, typename UInt>
- FMT_CONSTEXPR20 auto format_decimal(Char* out, UInt value, int size)
- -> format_decimal_result<Char*> {
- FMT_ASSERT(size >= count_digits(value), "invalid digit count");
- out += size;
- Char* end = out;
- while (value >= 100) {
- // Integer division is slow so do it for a group of two digits instead
- // of for every digit. The idea comes from the talk by Alexandrescu
- // "Three Optimization Tips for C++". See speed-test for a comparison.
- out -= 2;
- copy2(out, digits2(static_cast<size_t>(value % 100)));
- value /= 100;
- }
- if (value < 10) {
- *--out = static_cast<Char>('0' + value);
- return {out, end};
- }
- out -= 2;
- copy2(out, digits2(static_cast<size_t>(value)));
- return {out, end};
- }
- template <typename Char, typename UInt, typename Iterator,
- FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<Iterator>>::value)>
- FMT_CONSTEXPR inline auto format_decimal(Iterator out, UInt value, int size)
- -> format_decimal_result<Iterator> {
- // Buffer is large enough to hold all digits (digits10 + 1).
- Char buffer[digits10<UInt>() + 1];
- auto end = format_decimal(buffer, value, size).end;
- return {out, detail::copy_str_noinline<Char>(buffer, end, out)};
- }
- template <unsigned BASE_BITS, typename Char, typename UInt>
- FMT_CONSTEXPR auto format_uint(Char* buffer, UInt value, int num_digits,
- bool upper = false) -> Char* {
- buffer += num_digits;
- Char* end = buffer;
- do {
- const char* digits = upper ? "0123456789ABCDEF" : "0123456789abcdef";
- unsigned digit = static_cast<unsigned>(value & ((1 << BASE_BITS) - 1));
- *--buffer = static_cast<Char>(BASE_BITS < 4 ? static_cast<char>('0' + digit)
- : digits[digit]);
- } while ((value >>= BASE_BITS) != 0);
- return end;
- }
- template <unsigned BASE_BITS, typename Char, typename It, typename UInt>
- inline auto format_uint(It out, UInt value, int num_digits, bool upper = false)
- -> It {
- if (auto ptr = to_pointer<Char>(out, to_unsigned(num_digits))) {
- format_uint<BASE_BITS>(ptr, value, num_digits, upper);
- return out;
- }
- // Buffer should be large enough to hold all digits (digits / BASE_BITS + 1).
- char buffer[num_bits<UInt>() / BASE_BITS + 1];
- format_uint<BASE_BITS>(buffer, value, num_digits, upper);
- return detail::copy_str_noinline<Char>(buffer, buffer + num_digits, out);
- }
- // A converter from UTF-8 to UTF-16.
- class utf8_to_utf16 {
- private:
- basic_memory_buffer<wchar_t> buffer_;
- public:
- FMT_API explicit utf8_to_utf16(string_view s);
- operator basic_string_view<wchar_t>() const { return {&buffer_[0], size()}; }
- auto size() const -> size_t { return buffer_.size() - 1; }
- auto c_str() const -> const wchar_t* { return &buffer_[0]; }
- auto str() const -> std::wstring { return {&buffer_[0], size()}; }
- };
- namespace dragonbox {
- // Type-specific information that Dragonbox uses.
- template <typename T, typename Enable = void> struct float_info;
- template <> struct float_info<float> {
- using carrier_uint = uint32_t;
- static const int exponent_bits = 8;
- static const int kappa = 1;
- static const int big_divisor = 100;
- static const int small_divisor = 10;
- static const int min_k = -31;
- static const int max_k = 46;
- static const int shorter_interval_tie_lower_threshold = -35;
- static const int shorter_interval_tie_upper_threshold = -35;
- };
- template <> struct float_info<double> {
- using carrier_uint = uint64_t;
- static const int exponent_bits = 11;
- static const int kappa = 2;
- static const int big_divisor = 1000;
- static const int small_divisor = 100;
- static const int min_k = -292;
- static const int max_k = 326;
- static const int shorter_interval_tie_lower_threshold = -77;
- static const int shorter_interval_tie_upper_threshold = -77;
- };
- // An 80- or 128-bit floating point number.
- template <typename T>
- struct float_info<T, enable_if_t<std::numeric_limits<T>::digits == 64 ||
- std::numeric_limits<T>::digits == 113 ||
- is_float128<T>::value>> {
- using carrier_uint = detail::uint128_t;
- static const int exponent_bits = 15;
- };
- // A double-double floating point number.
- template <typename T>
- struct float_info<T, enable_if_t<is_double_double<T>::value>> {
- using carrier_uint = detail::uint128_t;
- };
- template <typename T> struct decimal_fp {
- using significand_type = typename float_info<T>::carrier_uint;
- significand_type significand;
- int exponent;
- };
- template <typename T> FMT_API auto to_decimal(T x) noexcept -> decimal_fp<T>;
- } // namespace dragonbox
- // Returns true iff Float has the implicit bit which is not stored.
- template <typename Float> constexpr bool has_implicit_bit() {
- // An 80-bit FP number has a 64-bit significand an no implicit bit.
- return std::numeric_limits<Float>::digits != 64;
- }
- // Returns the number of significand bits stored in Float. The implicit bit is
- // not counted since it is not stored.
- template <typename Float> constexpr int num_significand_bits() {
- // std::numeric_limits may not support __float128.
- return is_float128<Float>() ? 112
- : (std::numeric_limits<Float>::digits -
- (has_implicit_bit<Float>() ? 1 : 0));
- }
- template <typename Float>
- constexpr auto exponent_mask() ->
- typename dragonbox::float_info<Float>::carrier_uint {
- using uint = typename dragonbox::float_info<Float>::carrier_uint;
- return ((uint(1) << dragonbox::float_info<Float>::exponent_bits) - 1)
- << num_significand_bits<Float>();
- }
- template <typename Float> constexpr auto exponent_bias() -> int {
- // std::numeric_limits may not support __float128.
- return is_float128<Float>() ? 16383
- : std::numeric_limits<Float>::max_exponent - 1;
- }
- // Writes the exponent exp in the form "[+-]d{2,3}" to buffer.
- template <typename Char, typename It>
- FMT_CONSTEXPR auto write_exponent(int exp, It it) -> It {
- FMT_ASSERT(-10000 < exp && exp < 10000, "exponent out of range");
- if (exp < 0) {
- *it++ = static_cast<Char>('-');
- exp = -exp;
- } else {
- *it++ = static_cast<Char>('+');
- }
- if (exp >= 100) {
- const char* top = digits2(to_unsigned(exp / 100));
- if (exp >= 1000) *it++ = static_cast<Char>(top[0]);
- *it++ = static_cast<Char>(top[1]);
- exp %= 100;
- }
- const char* d = digits2(to_unsigned(exp));
- *it++ = static_cast<Char>(d[0]);
- *it++ = static_cast<Char>(d[1]);
- return it;
- }
- // A floating-point number f * pow(2, e) where F is an unsigned type.
- template <typename F> struct basic_fp {
- F f;
- int e;
- static constexpr const int num_significand_bits =
- static_cast<int>(sizeof(F) * num_bits<unsigned char>());
- constexpr basic_fp() : f(0), e(0) {}
- constexpr basic_fp(uint64_t f_val, int e_val) : f(f_val), e(e_val) {}
- // Constructs fp from an IEEE754 floating-point number.
- template <typename Float> FMT_CONSTEXPR basic_fp(Float n) { assign(n); }
- // Assigns n to this and return true iff predecessor is closer than successor.
- template <typename Float, FMT_ENABLE_IF(!is_double_double<Float>::value)>
- FMT_CONSTEXPR auto assign(Float n) -> bool {
- static_assert(std::numeric_limits<Float>::digits <= 113, "unsupported FP");
- // Assume Float is in the format [sign][exponent][significand].
- using carrier_uint = typename dragonbox::float_info<Float>::carrier_uint;
- const auto num_float_significand_bits =
- detail::num_significand_bits<Float>();
- const auto implicit_bit = carrier_uint(1) << num_float_significand_bits;
- const auto significand_mask = implicit_bit - 1;
- auto u = bit_cast<carrier_uint>(n);
- f = static_cast<F>(u & significand_mask);
- auto biased_e = static_cast<int>((u & exponent_mask<Float>()) >>
- num_float_significand_bits);
- // The predecessor is closer if n is a normalized power of 2 (f == 0)
- // other than the smallest normalized number (biased_e > 1).
- auto is_predecessor_closer = f == 0 && biased_e > 1;
- if (biased_e == 0)
- biased_e = 1; // Subnormals use biased exponent 1 (min exponent).
- else if (has_implicit_bit<Float>())
- f += static_cast<F>(implicit_bit);
- e = biased_e - exponent_bias<Float>() - num_float_significand_bits;
- if (!has_implicit_bit<Float>()) ++e;
- return is_predecessor_closer;
- }
- template <typename Float, FMT_ENABLE_IF(is_double_double<Float>::value)>
- FMT_CONSTEXPR auto assign(Float n) -> bool {
- static_assert(std::numeric_limits<double>::is_iec559, "unsupported FP");
- return assign(static_cast<double>(n));
- }
- };
- using fp = basic_fp<unsigned long long>;
- // Normalizes the value converted from double and multiplied by (1 << SHIFT).
- template <int SHIFT = 0, typename F>
- FMT_CONSTEXPR basic_fp<F> normalize(basic_fp<F> value) {
- // Handle subnormals.
- const auto implicit_bit = F(1) << num_significand_bits<double>();
- const auto shifted_implicit_bit = implicit_bit << SHIFT;
- while ((value.f & shifted_implicit_bit) == 0) {
- value.f <<= 1;
- --value.e;
- }
- // Subtract 1 to account for hidden bit.
- const auto offset = basic_fp<F>::num_significand_bits -
- num_significand_bits<double>() - SHIFT - 1;
- value.f <<= offset;
- value.e -= offset;
- return value;
- }
- // Computes lhs * rhs / pow(2, 64) rounded to nearest with half-up tie breaking.
- FMT_CONSTEXPR inline uint64_t multiply(uint64_t lhs, uint64_t rhs) {
- #if FMT_USE_INT128
- auto product = static_cast<__uint128_t>(lhs) * rhs;
- auto f = static_cast<uint64_t>(product >> 64);
- return (static_cast<uint64_t>(product) & (1ULL << 63)) != 0 ? f + 1 : f;
- #else
- // Multiply 32-bit parts of significands.
- uint64_t mask = (1ULL << 32) - 1;
- uint64_t a = lhs >> 32, b = lhs & mask;
- uint64_t c = rhs >> 32, d = rhs & mask;
- uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d;
- // Compute mid 64-bit of result and round.
- uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31);
- return ac + (ad >> 32) + (bc >> 32) + (mid >> 32);
- #endif
- }
- FMT_CONSTEXPR inline fp operator*(fp x, fp y) {
- return {multiply(x.f, y.f), x.e + y.e + 64};
- }
- template <typename T = void> struct basic_data {
- // Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340.
- // These are generated by support/compute-powers.py.
- static constexpr uint64_t pow10_significands[87] = {
- 0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76,
- 0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df,
- 0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c,
- 0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5,
- 0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57,
- 0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7,
- 0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e,
- 0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996,
- 0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126,
- 0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053,
- 0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f,
- 0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b,
- 0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06,
- 0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb,
- 0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000,
- 0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984,
- 0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068,
- 0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8,
- 0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758,
- 0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85,
- 0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d,
- 0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25,
- 0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2,
- 0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a,
- 0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410,
- 0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129,
- 0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85,
- 0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841,
- 0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b,
- };
- #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
- # pragma GCC diagnostic push
- # pragma GCC diagnostic ignored "-Wnarrowing"
- #endif
- // Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding
- // to significands above.
- static constexpr int16_t pow10_exponents[87] = {
- -1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954,
- -927, -901, -874, -847, -821, -794, -768, -741, -715, -688, -661,
- -635, -608, -582, -555, -529, -502, -475, -449, -422, -396, -369,
- -343, -316, -289, -263, -236, -210, -183, -157, -130, -103, -77,
- -50, -24, 3, 30, 56, 83, 109, 136, 162, 189, 216,
- 242, 269, 295, 322, 348, 375, 402, 428, 455, 481, 508,
- 534, 561, 588, 614, 641, 667, 694, 720, 747, 774, 800,
- 827, 853, 880, 907, 933, 960, 986, 1013, 1039, 1066};
- #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
- # pragma GCC diagnostic pop
- #endif
- static constexpr uint64_t power_of_10_64[20] = {
- 1, FMT_POWERS_OF_10(1ULL), FMT_POWERS_OF_10(1000000000ULL),
- 10000000000000000000ULL};
- };
- #if FMT_CPLUSPLUS < 201703L
- template <typename T> constexpr uint64_t basic_data<T>::pow10_significands[];
- template <typename T> constexpr int16_t basic_data<T>::pow10_exponents[];
- template <typename T> constexpr uint64_t basic_data<T>::power_of_10_64[];
- #endif
- // This is a struct rather than an alias to avoid shadowing warnings in gcc.
- struct data : basic_data<> {};
- // Returns a cached power of 10 `c_k = c_k.f * pow(2, c_k.e)` such that its
- // (binary) exponent satisfies `min_exponent <= c_k.e <= min_exponent + 28`.
- FMT_CONSTEXPR inline fp get_cached_power(int min_exponent,
- int& pow10_exponent) {
- const int shift = 32;
- // log10(2) = 0x0.4d104d427de7fbcc...
- const int64_t significand = 0x4d104d427de7fbcc;
- int index = static_cast<int>(
- ((min_exponent + fp::num_significand_bits - 1) * (significand >> shift) +
- ((int64_t(1) << shift) - 1)) // ceil
- >> 32 // arithmetic shift
- );
- // Decimal exponent of the first (smallest) cached power of 10.
- const int first_dec_exp = -348;
- // Difference between 2 consecutive decimal exponents in cached powers of 10.
- const int dec_exp_step = 8;
- index = (index - first_dec_exp - 1) / dec_exp_step + 1;
- pow10_exponent = first_dec_exp + index * dec_exp_step;
- // Using *(x + index) instead of x[index] avoids an issue with some compilers
- // using the EDG frontend (e.g. nvhpc/22.3 in C++17 mode).
- return {*(data::pow10_significands + index),
- *(data::pow10_exponents + index)};
- }
- #ifndef _MSC_VER
- # define FMT_SNPRINTF snprintf
- #else
- FMT_API auto fmt_snprintf(char* buf, size_t size, const char* fmt, ...) -> int;
- # define FMT_SNPRINTF fmt_snprintf
- #endif // _MSC_VER
- // Formats a floating-point number with snprintf using the hexfloat format.
- template <typename T>
- auto snprintf_float(T value, int precision, float_specs specs,
- buffer<char>& buf) -> int {
- // Buffer capacity must be non-zero, otherwise MSVC's vsnprintf_s will fail.
- FMT_ASSERT(buf.capacity() > buf.size(), "empty buffer");
- FMT_ASSERT(specs.format == float_format::hex, "");
- static_assert(!std::is_same<T, float>::value, "");
- // Build the format string.
- char format[7]; // The longest format is "%#.*Le".
- char* format_ptr = format;
- *format_ptr++ = '%';
- if (specs.showpoint) *format_ptr++ = '#';
- if (precision >= 0) {
- *format_ptr++ = '.';
- *format_ptr++ = '*';
- }
- if (std::is_same<T, long double>()) *format_ptr++ = 'L';
- *format_ptr++ = specs.upper ? 'A' : 'a';
- *format_ptr = '\0';
- // Format using snprintf.
- auto offset = buf.size();
- for (;;) {
- auto begin = buf.data() + offset;
- auto capacity = buf.capacity() - offset;
- abort_fuzzing_if(precision > 100000);
- // Suppress the warning about a nonliteral format string.
- // Cannot use auto because of a bug in MinGW (#1532).
- int (*snprintf_ptr)(char*, size_t, const char*, ...) = FMT_SNPRINTF;
- int result = precision >= 0
- ? snprintf_ptr(begin, capacity, format, precision, value)
- : snprintf_ptr(begin, capacity, format, value);
- if (result < 0) {
- // The buffer will grow exponentially.
- buf.try_reserve(buf.capacity() + 1);
- continue;
- }
- auto size = to_unsigned(result);
- // Size equal to capacity means that the last character was truncated.
- if (size < capacity) {
- buf.try_resize(size + offset);
- return 0;
- }
- buf.try_reserve(size + offset + 1); // Add 1 for the terminating '\0'.
- }
- }
- template <typename T>
- using convert_float_result =
- conditional_t<std::is_same<T, float>::value || sizeof(T) == sizeof(double),
- double, T>;
- template <typename T>
- constexpr auto convert_float(T value) -> convert_float_result<T> {
- return static_cast<convert_float_result<T>>(value);
- }
- template <typename OutputIt, typename Char>
- FMT_NOINLINE FMT_CONSTEXPR auto fill(OutputIt it, size_t n,
- const fill_t<Char>& fill) -> OutputIt {
- auto fill_size = fill.size();
- if (fill_size == 1) return detail::fill_n(it, n, fill[0]);
- auto data = fill.data();
- for (size_t i = 0; i < n; ++i)
- it = copy_str<Char>(data, data + fill_size, it);
- return it;
- }
- // Writes the output of f, padded according to format specifications in specs.
- // size: output size in code units.
- // width: output display width in (terminal) column positions.
- template <align::type align = align::left, typename OutputIt, typename Char,
- typename F>
- FMT_CONSTEXPR auto write_padded(OutputIt out,
- const basic_format_specs<Char>& specs,
- size_t size, size_t width, F&& f) -> OutputIt {
- static_assert(align == align::left || align == align::right, "");
- unsigned spec_width = to_unsigned(specs.width);
- size_t padding = spec_width > width ? spec_width - width : 0;
- // Shifts are encoded as string literals because static constexpr is not
- // supported in constexpr functions.
- auto* shifts = align == align::left ? "\x1f\x1f\x00\x01" : "\x00\x1f\x00\x01";
- size_t left_padding = padding >> shifts[specs.align];
- size_t right_padding = padding - left_padding;
- auto it = reserve(out, size + padding * specs.fill.size());
- if (left_padding != 0) it = fill(it, left_padding, specs.fill);
- it = f(it);
- if (right_padding != 0) it = fill(it, right_padding, specs.fill);
- return base_iterator(out, it);
- }
- template <align::type align = align::left, typename OutputIt, typename Char,
- typename F>
- constexpr auto write_padded(OutputIt out, const basic_format_specs<Char>& specs,
- size_t size, F&& f) -> OutputIt {
- return write_padded<align>(out, specs, size, size, f);
- }
- template <align::type align = align::left, typename Char, typename OutputIt>
- FMT_CONSTEXPR auto write_bytes(OutputIt out, string_view bytes,
- const basic_format_specs<Char>& specs)
- -> OutputIt {
- return write_padded<align>(
- out, specs, bytes.size(), [bytes](reserve_iterator<OutputIt> it) {
- const char* data = bytes.data();
- return copy_str<Char>(data, data + bytes.size(), it);
- });
- }
- template <typename Char, typename OutputIt, typename UIntPtr>
- auto write_ptr(OutputIt out, UIntPtr value,
- const basic_format_specs<Char>* specs) -> OutputIt {
- int num_digits = count_digits<4>(value);
- auto size = to_unsigned(num_digits) + size_t(2);
- auto write = [=](reserve_iterator<OutputIt> it) {
- *it++ = static_cast<Char>('0');
- *it++ = static_cast<Char>('x');
- return format_uint<4, Char>(it, value, num_digits);
- };
- return specs ? write_padded<align::right>(out, *specs, size, write)
- : base_iterator(out, write(reserve(out, size)));
- }
- // Returns true iff the code point cp is printable.
- FMT_API auto is_printable(uint32_t cp) -> bool;
- inline auto needs_escape(uint32_t cp) -> bool {
- return cp < 0x20 || cp == 0x7f || cp == '"' || cp == '\\' ||
- !is_printable(cp);
- }
- template <typename Char> struct find_escape_result {
- const Char* begin;
- const Char* end;
- uint32_t cp;
- };
- template <typename Char>
- using make_unsigned_char =
- typename conditional_t<std::is_integral<Char>::value,
- std::make_unsigned<Char>,
- type_identity<uint32_t>>::type;
- template <typename Char>
- auto find_escape(const Char* begin, const Char* end)
- -> find_escape_result<Char> {
- for (; begin != end; ++begin) {
- uint32_t cp = static_cast<make_unsigned_char<Char>>(*begin);
- if (const_check(sizeof(Char) == 1) && cp >= 0x80) continue;
- if (needs_escape(cp)) return {begin, begin + 1, cp};
- }
- return {begin, nullptr, 0};
- }
- inline auto find_escape(const char* begin, const char* end)
- -> find_escape_result<char> {
- if (!is_utf8()) return find_escape<char>(begin, end);
- auto result = find_escape_result<char>{end, nullptr, 0};
- for_each_codepoint(string_view(begin, to_unsigned(end - begin)),
- [&](uint32_t cp, string_view sv) {
- if (needs_escape(cp)) {
- result = {sv.begin(), sv.end(), cp};
- return false;
- }
- return true;
- });
- return result;
- }
- #define FMT_STRING_IMPL(s, base, explicit) \
- [] { \
- /* Use the hidden visibility as a workaround for a GCC bug (#1973). */ \
- /* Use a macro-like name to avoid shadowing warnings. */ \
- struct FMT_GCC_VISIBILITY_HIDDEN FMT_COMPILE_STRING : base { \
- using char_type FMT_MAYBE_UNUSED = fmt::remove_cvref_t<decltype(s[0])>; \
- FMT_MAYBE_UNUSED FMT_CONSTEXPR explicit \
- operator fmt::basic_string_view<char_type>() const { \
- return fmt::detail_exported::compile_string_to_view<char_type>(s); \
- } \
- }; \
- return FMT_COMPILE_STRING(); \
- }()
- /**
- \rst
- Constructs a compile-time format string from a string literal *s*.
- **Example**::
- // A compile-time error because 'd' is an invalid specifier for strings.
- std::string s = fmt::format(FMT_STRING("{:d}"), "foo");
- \endrst
- */
- #define FMT_STRING(s) FMT_STRING_IMPL(s, fmt::detail::compile_string, )
- template <size_t width, typename Char, typename OutputIt>
- auto write_codepoint(OutputIt out, char prefix, uint32_t cp) -> OutputIt {
- *out++ = static_cast<Char>('\\');
- *out++ = static_cast<Char>(prefix);
- Char buf[width];
- fill_n(buf, width, static_cast<Char>('0'));
- format_uint<4>(buf, cp, width);
- return copy_str<Char>(buf, buf + width, out);
- }
- template <typename OutputIt, typename Char>
- auto write_escaped_cp(OutputIt out, const find_escape_result<Char>& escape)
- -> OutputIt {
- auto c = static_cast<Char>(escape.cp);
- switch (escape.cp) {
- case '\n':
- *out++ = static_cast<Char>('\\');
- c = static_cast<Char>('n');
- break;
- case '\r':
- *out++ = static_cast<Char>('\\');
- c = static_cast<Char>('r');
- break;
- case '\t':
- *out++ = static_cast<Char>('\\');
- c = static_cast<Char>('t');
- break;
- case '"':
- FMT_FALLTHROUGH;
- case '\'':
- FMT_FALLTHROUGH;
- case '\\':
- *out++ = static_cast<Char>('\\');
- break;
- default:
- if (is_utf8()) {
- if (escape.cp < 0x100) {
- return write_codepoint<2, Char>(out, 'x', escape.cp);
- }
- if (escape.cp < 0x10000) {
- return write_codepoint<4, Char>(out, 'u', escape.cp);
- }
- if (escape.cp < 0x110000) {
- return write_codepoint<8, Char>(out, 'U', escape.cp);
- }
- }
- for (Char escape_char : basic_string_view<Char>(
- escape.begin, to_unsigned(escape.end - escape.begin))) {
- out = write_codepoint<2, Char>(out, 'x',
- static_cast<uint32_t>(escape_char) & 0xFF);
- }
- return out;
- }
- *out++ = c;
- return out;
- }
- template <typename Char, typename OutputIt>
- auto write_escaped_string(OutputIt out, basic_string_view<Char> str)
- -> OutputIt {
- *out++ = static_cast<Char>('"');
- auto begin = str.begin(), end = str.end();
- do {
- auto escape = find_escape(begin, end);
- out = copy_str<Char>(begin, escape.begin, out);
- begin = escape.end;
- if (!begin) break;
- out = write_escaped_cp<OutputIt, Char>(out, escape);
- } while (begin != end);
- *out++ = static_cast<Char>('"');
- return out;
- }
- template <typename Char, typename OutputIt>
- auto write_escaped_char(OutputIt out, Char v) -> OutputIt {
- *out++ = static_cast<Char>('\'');
- if ((needs_escape(static_cast<uint32_t>(v)) && v != static_cast<Char>('"')) ||
- v == static_cast<Char>('\'')) {
- out = write_escaped_cp(
- out, find_escape_result<Char>{&v, &v + 1, static_cast<uint32_t>(v)});
- } else {
- *out++ = v;
- }
- *out++ = static_cast<Char>('\'');
- return out;
- }
- template <typename Char, typename OutputIt>
- FMT_CONSTEXPR auto write_char(OutputIt out, Char value,
- const basic_format_specs<Char>& specs)
- -> OutputIt {
- bool is_debug = specs.type == presentation_type::debug;
- return write_padded(out, specs, 1, [=](reserve_iterator<OutputIt> it) {
- if (is_debug) return write_escaped_char(it, value);
- *it++ = value;
- return it;
- });
- }
- template <typename Char, typename OutputIt>
- FMT_CONSTEXPR auto write(OutputIt out, Char value,
- const basic_format_specs<Char>& specs,
- locale_ref loc = {}) -> OutputIt {
- return check_char_specs(specs)
- ? write_char(out, value, specs)
- : write(out, static_cast<int>(value), specs, loc);
- }
- // Data for write_int that doesn't depend on output iterator type. It is used to
- // avoid template code bloat.
- template <typename Char> struct write_int_data {
- size_t size;
- size_t padding;
- FMT_CONSTEXPR write_int_data(int num_digits, unsigned prefix,
- const basic_format_specs<Char>& specs)
- : size((prefix >> 24) + to_unsigned(num_digits)), padding(0) {
- if (specs.align == align::numeric) {
- auto width = to_unsigned(specs.width);
- if (width > size) {
- padding = width - size;
- size = width;
- }
- } else if (specs.precision > num_digits) {
- size = (prefix >> 24) + to_unsigned(specs.precision);
- padding = to_unsigned(specs.precision - num_digits);
- }
- }
- };
- // Writes an integer in the format
- // <left-padding><prefix><numeric-padding><digits><right-padding>
- // where <digits> are written by write_digits(it).
- // prefix contains chars in three lower bytes and the size in the fourth byte.
- template <typename OutputIt, typename Char, typename W>
- FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, int num_digits,
- unsigned prefix,
- const basic_format_specs<Char>& specs,
- W write_digits) -> OutputIt {
- // Slightly faster check for specs.width == 0 && specs.precision == -1.
- if ((specs.width | (specs.precision + 1)) == 0) {
- auto it = reserve(out, to_unsigned(num_digits) + (prefix >> 24));
- if (prefix != 0) {
- for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8)
- *it++ = static_cast<Char>(p & 0xff);
- }
- return base_iterator(out, write_digits(it));
- }
- auto data = write_int_data<Char>(num_digits, prefix, specs);
- return write_padded<align::right>(
- out, specs, data.size, [=](reserve_iterator<OutputIt> it) {
- for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8)
- *it++ = static_cast<Char>(p & 0xff);
- it = detail::fill_n(it, data.padding, static_cast<Char>('0'));
- return write_digits(it);
- });
- }
- template <typename Char> class digit_grouping {
- private:
- thousands_sep_result<Char> sep_;
- struct next_state {
- std::string::const_iterator group;
- int pos;
- };
- next_state initial_state() const { return {sep_.grouping.begin(), 0}; }
- // Returns the next digit group separator position.
- int next(next_state& state) const {
- if (!sep_.thousands_sep) return max_value<int>();
- if (state.group == sep_.grouping.end())
- return state.pos += sep_.grouping.back();
- if (*state.group <= 0 || *state.group == max_value<char>())
- return max_value<int>();
- state.pos += *state.group++;
- return state.pos;
- }
- public:
- explicit digit_grouping(locale_ref loc, bool localized = true) {
- if (localized)
- sep_ = thousands_sep<Char>(loc);
- else
- sep_.thousands_sep = Char();
- }
- explicit digit_grouping(thousands_sep_result<Char> sep) : sep_(sep) {}
- Char separator() const { return sep_.thousands_sep; }
- int count_separators(int num_digits) const {
- int count = 0;
- auto state = initial_state();
- while (num_digits > next(state)) ++count;
- return count;
- }
- // Applies grouping to digits and write the output to out.
- template <typename Out, typename C>
- Out apply(Out out, basic_string_view<C> digits) const {
- auto num_digits = static_cast<int>(digits.size());
- auto separators = basic_memory_buffer<int>();
- separators.push_back(0);
- auto state = initial_state();
- while (int i = next(state)) {
- if (i >= num_digits) break;
- separators.push_back(i);
- }
- for (int i = 0, sep_index = static_cast<int>(separators.size() - 1);
- i < num_digits; ++i) {
- if (num_digits - i == separators[sep_index]) {
- *out++ = separator();
- --sep_index;
- }
- *out++ = static_cast<Char>(digits[to_unsigned(i)]);
- }
- return out;
- }
- };
- template <typename OutputIt, typename UInt, typename Char>
- auto write_int_localized(OutputIt out, UInt value, unsigned prefix,
- const basic_format_specs<Char>& specs,
- const digit_grouping<Char>& grouping) -> OutputIt {
- static_assert(std::is_same<uint64_or_128_t<UInt>, UInt>::value, "");
- int num_digits = count_digits(value);
- char digits[40];
- format_decimal(digits, value, num_digits);
- unsigned size = to_unsigned((prefix != 0 ? 1 : 0) + num_digits +
- grouping.count_separators(num_digits));
- return write_padded<align::right>(
- out, specs, size, size, [&](reserve_iterator<OutputIt> it) {
- if (prefix != 0) {
- char sign = static_cast<char>(prefix);
- *it++ = static_cast<Char>(sign);
- }
- return grouping.apply(it, string_view(digits, to_unsigned(num_digits)));
- });
- }
- template <typename OutputIt, typename UInt, typename Char>
- auto write_int_localized(OutputIt& out, UInt value, unsigned prefix,
- const basic_format_specs<Char>& specs, locale_ref loc)
- -> bool {
- auto grouping = digit_grouping<Char>(loc);
- out = write_int_localized(out, value, prefix, specs, grouping);
- return true;
- }
- FMT_CONSTEXPR inline void prefix_append(unsigned& prefix, unsigned value) {
- prefix |= prefix != 0 ? value << 8 : value;
- prefix += (1u + (value > 0xff ? 1 : 0)) << 24;
- }
- template <typename UInt> struct write_int_arg {
- UInt abs_value;
- unsigned prefix;
- };
- template <typename T>
- FMT_CONSTEXPR auto make_write_int_arg(T value, sign_t sign)
- -> write_int_arg<uint32_or_64_or_128_t<T>> {
- auto prefix = 0u;
- auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value);
- if (is_negative(value)) {
- prefix = 0x01000000 | '-';
- abs_value = 0 - abs_value;
- } else {
- constexpr const unsigned prefixes[4] = {0, 0, 0x1000000u | '+',
- 0x1000000u | ' '};
- prefix = prefixes[sign];
- }
- return {abs_value, prefix};
- }
- template <typename Char, typename OutputIt, typename T>
- FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, write_int_arg<T> arg,
- const basic_format_specs<Char>& specs,
- locale_ref loc) -> OutputIt {
- static_assert(std::is_same<T, uint32_or_64_or_128_t<T>>::value, "");
- auto abs_value = arg.abs_value;
- auto prefix = arg.prefix;
- switch (specs.type) {
- case presentation_type::none:
- case presentation_type::dec: {
- if (specs.localized &&
- write_int_localized(out, static_cast<uint64_or_128_t<T>>(abs_value),
- prefix, specs, loc)) {
- return out;
- }
- auto num_digits = count_digits(abs_value);
- return write_int(
- out, num_digits, prefix, specs, [=](reserve_iterator<OutputIt> it) {
- return format_decimal<Char>(it, abs_value, num_digits).end;
- });
- }
- case presentation_type::hex_lower:
- case presentation_type::hex_upper: {
- bool upper = specs.type == presentation_type::hex_upper;
- if (specs.alt)
- prefix_append(prefix, unsigned(upper ? 'X' : 'x') << 8 | '0');
- int num_digits = count_digits<4>(abs_value);
- return write_int(
- out, num_digits, prefix, specs, [=](reserve_iterator<OutputIt> it) {
- return format_uint<4, Char>(it, abs_value, num_digits, upper);
- });
- }
- case presentation_type::bin_lower:
- case presentation_type::bin_upper: {
- bool upper = specs.type == presentation_type::bin_upper;
- if (specs.alt)
- prefix_append(prefix, unsigned(upper ? 'B' : 'b') << 8 | '0');
- int num_digits = count_digits<1>(abs_value);
- return write_int(out, num_digits, prefix, specs,
- [=](reserve_iterator<OutputIt> it) {
- return format_uint<1, Char>(it, abs_value, num_digits);
- });
- }
- case presentation_type::oct: {
- int num_digits = count_digits<3>(abs_value);
- // Octal prefix '0' is counted as a digit, so only add it if precision
- // is not greater than the number of digits.
- if (specs.alt && specs.precision <= num_digits && abs_value != 0)
- prefix_append(prefix, '0');
- return write_int(out, num_digits, prefix, specs,
- [=](reserve_iterator<OutputIt> it) {
- return format_uint<3, Char>(it, abs_value, num_digits);
- });
- }
- case presentation_type::chr:
- return write_char(out, static_cast<Char>(abs_value), specs);
- default:
- throw_format_error("invalid type specifier");
- }
- return out;
- }
- template <typename Char, typename OutputIt, typename T>
- FMT_CONSTEXPR FMT_NOINLINE auto write_int_noinline(
- OutputIt out, write_int_arg<T> arg, const basic_format_specs<Char>& specs,
- locale_ref loc) -> OutputIt {
- return write_int(out, arg, specs, loc);
- }
- template <typename Char, typename OutputIt, typename T,
- FMT_ENABLE_IF(is_integral<T>::value &&
- !std::is_same<T, bool>::value &&
- std::is_same<OutputIt, buffer_appender<Char>>::value)>
- FMT_CONSTEXPR FMT_INLINE auto write(OutputIt out, T value,
- const basic_format_specs<Char>& specs,
- locale_ref loc) -> OutputIt {
- return write_int_noinline(out, make_write_int_arg(value, specs.sign), specs,
- loc);
- }
- // An inlined version of write used in format string compilation.
- template <typename Char, typename OutputIt, typename T,
- FMT_ENABLE_IF(is_integral<T>::value &&
- !std::is_same<T, bool>::value &&
- !std::is_same<OutputIt, buffer_appender<Char>>::value)>
- FMT_CONSTEXPR FMT_INLINE auto write(OutputIt out, T value,
- const basic_format_specs<Char>& specs,
- locale_ref loc) -> OutputIt {
- return write_int(out, make_write_int_arg(value, specs.sign), specs, loc);
- }
- // An output iterator that counts the number of objects written to it and
- // discards them.
- class counting_iterator {
- private:
- size_t count_;
- public:
- using iterator_category = std::output_iterator_tag;
- using difference_type = std::ptrdiff_t;
- using pointer = void;
- using reference = void;
- FMT_UNCHECKED_ITERATOR(counting_iterator);
- struct value_type {
- template <typename T> FMT_CONSTEXPR void operator=(const T&) {}
- };
- FMT_CONSTEXPR counting_iterator() : count_(0) {}
- FMT_CONSTEXPR size_t count() const { return count_; }
- FMT_CONSTEXPR counting_iterator& operator++() {
- ++count_;
- return *this;
- }
- FMT_CONSTEXPR counting_iterator operator++(int) {
- auto it = *this;
- ++*this;
- return it;
- }
- FMT_CONSTEXPR friend counting_iterator operator+(counting_iterator it,
- difference_type n) {
- it.count_ += static_cast<size_t>(n);
- return it;
- }
- FMT_CONSTEXPR value_type operator*() const { return {}; }
- };
- template <typename Char, typename OutputIt>
- FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> s,
- const basic_format_specs<Char>& specs) -> OutputIt {
- auto data = s.data();
- auto size = s.size();
- if (specs.precision >= 0 && to_unsigned(specs.precision) < size)
- size = code_point_index(s, to_unsigned(specs.precision));
- bool is_debug = specs.type == presentation_type::debug;
- size_t width = 0;
- if (specs.width != 0) {
- if (is_debug)
- width = write_escaped_string(counting_iterator{}, s).count();
- else
- width = compute_width(basic_string_view<Char>(data, size));
- }
- return write_padded(out, specs, size, width,
- [=](reserve_iterator<OutputIt> it) {
- if (is_debug) return write_escaped_string(it, s);
- return copy_str<Char>(data, data + size, it);
- });
- }
- template <typename Char, typename OutputIt>
- FMT_CONSTEXPR auto write(OutputIt out,
- basic_string_view<type_identity_t<Char>> s,
- const basic_format_specs<Char>& specs, locale_ref)
- -> OutputIt {
- check_string_type_spec(specs.type);
- return write(out, s, specs);
- }
- template <typename Char, typename OutputIt>
- FMT_CONSTEXPR auto write(OutputIt out, const Char* s,
- const basic_format_specs<Char>& specs, locale_ref)
- -> OutputIt {
- return check_cstring_type_spec(specs.type)
- ? write(out, basic_string_view<Char>(s), specs, {})
- : write_ptr<Char>(out, bit_cast<uintptr_t>(s), &specs);
- }
- template <typename Char, typename OutputIt, typename T,
- FMT_ENABLE_IF(is_integral<T>::value &&
- !std::is_same<T, bool>::value &&
- !std::is_same<T, Char>::value)>
- FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt {
- auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value);
- bool negative = is_negative(value);
- // Don't do -abs_value since it trips unsigned-integer-overflow sanitizer.
- if (negative) abs_value = ~abs_value + 1;
- int num_digits = count_digits(abs_value);
- auto size = (negative ? 1 : 0) + static_cast<size_t>(num_digits);
- auto it = reserve(out, size);
- if (auto ptr = to_pointer<Char>(it, size)) {
- if (negative) *ptr++ = static_cast<Char>('-');
- format_decimal<Char>(ptr, abs_value, num_digits);
- return out;
- }
- if (negative) *it++ = static_cast<Char>('-');
- it = format_decimal<Char>(it, abs_value, num_digits).end;
- return base_iterator(out, it);
- }
- template <typename Char, typename OutputIt>
- FMT_CONSTEXPR20 auto write_nonfinite(OutputIt out, bool isnan,
- basic_format_specs<Char> specs,
- const float_specs& fspecs) -> OutputIt {
- auto str =
- isnan ? (fspecs.upper ? "NAN" : "nan") : (fspecs.upper ? "INF" : "inf");
- constexpr size_t str_size = 3;
- auto sign = fspecs.sign;
- auto size = str_size + (sign ? 1 : 0);
- // Replace '0'-padding with space for non-finite values.
- const bool is_zero_fill =
- specs.fill.size() == 1 && *specs.fill.data() == static_cast<Char>('0');
- if (is_zero_fill) specs.fill[0] = static_cast<Char>(' ');
- return write_padded(out, specs, size, [=](reserve_iterator<OutputIt> it) {
- if (sign) *it++ = detail::sign<Char>(sign);
- return copy_str<Char>(str, str + str_size, it);
- });
- }
- // A decimal floating-point number significand * pow(10, exp).
- struct big_decimal_fp {
- const char* significand;
- int significand_size;
- int exponent;
- };
- constexpr auto get_significand_size(const big_decimal_fp& f) -> int {
- return f.significand_size;
- }
- template <typename T>
- inline auto get_significand_size(const dragonbox::decimal_fp<T>& f) -> int {
- return count_digits(f.significand);
- }
- template <typename Char, typename OutputIt>
- constexpr auto write_significand(OutputIt out, const char* significand,
- int significand_size) -> OutputIt {
- return copy_str<Char>(significand, significand + significand_size, out);
- }
- template <typename Char, typename OutputIt, typename UInt>
- inline auto write_significand(OutputIt out, UInt significand,
- int significand_size) -> OutputIt {
- return format_decimal<Char>(out, significand, significand_size).end;
- }
- template <typename Char, typename OutputIt, typename T, typename Grouping>
- FMT_CONSTEXPR20 auto write_significand(OutputIt out, T significand,
- int significand_size, int exponent,
- const Grouping& grouping) -> OutputIt {
- if (!grouping.separator()) {
- out = write_significand<Char>(out, significand, significand_size);
- return detail::fill_n(out, exponent, static_cast<Char>('0'));
- }
- auto buffer = memory_buffer();
- write_significand<char>(appender(buffer), significand, significand_size);
- detail::fill_n(appender(buffer), exponent, '0');
- return grouping.apply(out, string_view(buffer.data(), buffer.size()));
- }
- template <typename Char, typename UInt,
- FMT_ENABLE_IF(std::is_integral<UInt>::value)>
- inline auto write_significand(Char* out, UInt significand, int significand_size,
- int integral_size, Char decimal_point) -> Char* {
- if (!decimal_point)
- return format_decimal(out, significand, significand_size).end;
- out += significand_size + 1;
- Char* end = out;
- int floating_size = significand_size - integral_size;
- for (int i = floating_size / 2; i > 0; --i) {
- out -= 2;
- copy2(out, digits2(static_cast<std::size_t>(significand % 100)));
- significand /= 100;
- }
- if (floating_size % 2 != 0) {
- *--out = static_cast<Char>('0' + significand % 10);
- significand /= 10;
- }
- *--out = decimal_point;
- format_decimal(out - integral_size, significand, integral_size);
- return end;
- }
- template <typename OutputIt, typename UInt, typename Char,
- FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<OutputIt>>::value)>
- inline auto write_significand(OutputIt out, UInt significand,
- int significand_size, int integral_size,
- Char decimal_point) -> OutputIt {
- // Buffer is large enough to hold digits (digits10 + 1) and a decimal point.
- Char buffer[digits10<UInt>() + 2];
- auto end = write_significand(buffer, significand, significand_size,
- integral_size, decimal_point);
- return detail::copy_str_noinline<Char>(buffer, end, out);
- }
- template <typename OutputIt, typename Char>
- FMT_CONSTEXPR auto write_significand(OutputIt out, const char* significand,
- int significand_size, int integral_size,
- Char decimal_point) -> OutputIt {
- out = detail::copy_str_noinline<Char>(significand,
- significand + integral_size, out);
- if (!decimal_point) return out;
- *out++ = decimal_point;
- return detail::copy_str_noinline<Char>(significand + integral_size,
- significand + significand_size, out);
- }
- template <typename OutputIt, typename Char, typename T, typename Grouping>
- FMT_CONSTEXPR20 auto write_significand(OutputIt out, T significand,
- int significand_size, int integral_size,
- Char decimal_point,
- const Grouping& grouping) -> OutputIt {
- if (!grouping.separator()) {
- return write_significand(out, significand, significand_size, integral_size,
- decimal_point);
- }
- auto buffer = basic_memory_buffer<Char>();
- write_significand(buffer_appender<Char>(buffer), significand,
- significand_size, integral_size, decimal_point);
- grouping.apply(
- out, basic_string_view<Char>(buffer.data(), to_unsigned(integral_size)));
- return detail::copy_str_noinline<Char>(buffer.data() + integral_size,
- buffer.end(), out);
- }
- template <typename OutputIt, typename DecimalFP, typename Char,
- typename Grouping = digit_grouping<Char>>
- FMT_CONSTEXPR20 auto do_write_float(OutputIt out, const DecimalFP& f,
- const basic_format_specs<Char>& specs,
- float_specs fspecs, locale_ref loc)
- -> OutputIt {
- auto significand = f.significand;
- int significand_size = get_significand_size(f);
- const Char zero = static_cast<Char>('0');
- auto sign = fspecs.sign;
- size_t size = to_unsigned(significand_size) + (sign ? 1 : 0);
- using iterator = reserve_iterator<OutputIt>;
- Char decimal_point =
- fspecs.locale ? detail::decimal_point<Char>(loc) : static_cast<Char>('.');
- int output_exp = f.exponent + significand_size - 1;
- auto use_exp_format = [=]() {
- if (fspecs.format == float_format::exp) return true;
- if (fspecs.format != float_format::general) return false;
- // Use the fixed notation if the exponent is in [exp_lower, exp_upper),
- // e.g. 0.0001 instead of 1e-04. Otherwise use the exponent notation.
- const int exp_lower = -4, exp_upper = 16;
- return output_exp < exp_lower ||
- output_exp >= (fspecs.precision > 0 ? fspecs.precision : exp_upper);
- };
- if (use_exp_format()) {
- int num_zeros = 0;
- if (fspecs.showpoint) {
- num_zeros = fspecs.precision - significand_size;
- if (num_zeros < 0) num_zeros = 0;
- size += to_unsigned(num_zeros);
- } else if (significand_size == 1) {
- decimal_point = Char();
- }
- auto abs_output_exp = output_exp >= 0 ? output_exp : -output_exp;
- int exp_digits = 2;
- if (abs_output_exp >= 100) exp_digits = abs_output_exp >= 1000 ? 4 : 3;
- size += to_unsigned((decimal_point ? 1 : 0) + 2 + exp_digits);
- char exp_char = fspecs.upper ? 'E' : 'e';
- auto write = [=](iterator it) {
- if (sign) *it++ = detail::sign<Char>(sign);
- // Insert a decimal point after the first digit and add an exponent.
- it = write_significand(it, significand, significand_size, 1,
- decimal_point);
- if (num_zeros > 0) it = detail::fill_n(it, num_zeros, zero);
- *it++ = static_cast<Char>(exp_char);
- return write_exponent<Char>(output_exp, it);
- };
- return specs.width > 0 ? write_padded<align::right>(out, specs, size, write)
- : base_iterator(out, write(reserve(out, size)));
- }
- int exp = f.exponent + significand_size;
- if (f.exponent >= 0) {
- // 1234e5 -> 123400000[.0+]
- size += to_unsigned(f.exponent);
- int num_zeros = fspecs.precision - exp;
- abort_fuzzing_if(num_zeros > 5000);
- if (fspecs.showpoint) {
- ++size;
- if (num_zeros <= 0 && fspecs.format != float_format::fixed) num_zeros = 1;
- if (num_zeros > 0) size += to_unsigned(num_zeros);
- }
- auto grouping = Grouping(loc, fspecs.locale);
- size += to_unsigned(grouping.count_separators(exp));
- return write_padded<align::right>(out, specs, size, [&](iterator it) {
- if (sign) *it++ = detail::sign<Char>(sign);
- it = write_significand<Char>(it, significand, significand_size,
- f.exponent, grouping);
- if (!fspecs.showpoint) return it;
- *it++ = decimal_point;
- return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it;
- });
- } else if (exp > 0) {
- // 1234e-2 -> 12.34[0+]
- int num_zeros = fspecs.showpoint ? fspecs.precision - significand_size : 0;
- size += 1 + to_unsigned(num_zeros > 0 ? num_zeros : 0);
- auto grouping = Grouping(loc, fspecs.locale);
- size += to_unsigned(grouping.count_separators(significand_size));
- return write_padded<align::right>(out, specs, size, [&](iterator it) {
- if (sign) *it++ = detail::sign<Char>(sign);
- it = write_significand(it, significand, significand_size, exp,
- decimal_point, grouping);
- return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it;
- });
- }
- // 1234e-6 -> 0.001234
- int num_zeros = -exp;
- if (significand_size == 0 && fspecs.precision >= 0 &&
- fspecs.precision < num_zeros) {
- num_zeros = fspecs.precision;
- }
- bool pointy = num_zeros != 0 || significand_size != 0 || fspecs.showpoint;
- size += 1 + (pointy ? 1 : 0) + to_unsigned(num_zeros);
- return write_padded<align::right>(out, specs, size, [&](iterator it) {
- if (sign) *it++ = detail::sign<Char>(sign);
- *it++ = zero;
- if (!pointy) return it;
- *it++ = decimal_point;
- it = detail::fill_n(it, num_zeros, zero);
- return write_significand<Char>(it, significand, significand_size);
- });
- }
- template <typename Char> class fallback_digit_grouping {
- public:
- constexpr fallback_digit_grouping(locale_ref, bool) {}
- constexpr Char separator() const { return Char(); }
- constexpr int count_separators(int) const { return 0; }
- template <typename Out, typename C>
- constexpr Out apply(Out out, basic_string_view<C>) const {
- return out;
- }
- };
- template <typename OutputIt, typename DecimalFP, typename Char>
- FMT_CONSTEXPR20 auto write_float(OutputIt out, const DecimalFP& f,
- const basic_format_specs<Char>& specs,
- float_specs fspecs, locale_ref loc)
- -> OutputIt {
- if (is_constant_evaluated()) {
- return do_write_float<OutputIt, DecimalFP, Char,
- fallback_digit_grouping<Char>>(out, f, specs, fspecs,
- loc);
- } else {
- return do_write_float(out, f, specs, fspecs, loc);
- }
- }
- template <typename T> constexpr bool isnan(T value) {
- return !(value >= value); // std::isnan doesn't support __float128.
- }
- template <typename T, typename Enable = void>
- struct has_isfinite : std::false_type {};
- template <typename T>
- struct has_isfinite<T, enable_if_t<sizeof(std::isfinite(T())) != 0>>
- : std::true_type {};
- template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value&&
- has_isfinite<T>::value)>
- FMT_CONSTEXPR20 bool isfinite(T value) {
- constexpr T inf = T(std::numeric_limits<double>::infinity());
- if (is_constant_evaluated())
- return !detail::isnan(value) && value != inf && value != -inf;
- return std::isfinite(value);
- }
- template <typename T, FMT_ENABLE_IF(!has_isfinite<T>::value)>
- FMT_CONSTEXPR bool isfinite(T value) {
- T inf = T(std::numeric_limits<double>::infinity());
- // std::isfinite doesn't support __float128.
- return !detail::isnan(value) && value != inf && value != -inf;
- }
- template <typename T, FMT_ENABLE_IF(is_floating_point<T>::value)>
- FMT_INLINE FMT_CONSTEXPR bool signbit(T value) {
- if (is_constant_evaluated()) {
- #ifdef __cpp_if_constexpr
- if constexpr (std::numeric_limits<double>::is_iec559) {
- auto bits = detail::bit_cast<uint64_t>(static_cast<double>(value));
- return (bits >> (num_bits<uint64_t>() - 1)) != 0;
- }
- #endif
- }
- return std::signbit(static_cast<double>(value));
- }
- enum class round_direction { unknown, up, down };
- // Given the divisor (normally a power of 10), the remainder = v % divisor for
- // some number v and the error, returns whether v should be rounded up, down, or
- // whether the rounding direction can't be determined due to error.
- // error should be less than divisor / 2.
- FMT_CONSTEXPR inline round_direction get_round_direction(uint64_t divisor,
- uint64_t remainder,
- uint64_t error) {
- FMT_ASSERT(remainder < divisor, ""); // divisor - remainder won't overflow.
- FMT_ASSERT(error < divisor, ""); // divisor - error won't overflow.
- FMT_ASSERT(error < divisor - error, ""); // error * 2 won't overflow.
- // Round down if (remainder + error) * 2 <= divisor.
- if (remainder <= divisor - remainder && error * 2 <= divisor - remainder * 2)
- return round_direction::down;
- // Round up if (remainder - error) * 2 >= divisor.
- if (remainder >= error &&
- remainder - error >= divisor - (remainder - error)) {
- return round_direction::up;
- }
- return round_direction::unknown;
- }
- namespace digits {
- enum result {
- more, // Generate more digits.
- done, // Done generating digits.
- error // Digit generation cancelled due to an error.
- };
- }
- struct gen_digits_handler {
- char* buf;
- int size;
- int precision;
- int exp10;
- bool fixed;
- FMT_CONSTEXPR digits::result on_digit(char digit, uint64_t divisor,
- uint64_t remainder, uint64_t error,
- bool integral) {
- FMT_ASSERT(remainder < divisor, "");
- buf[size++] = digit;
- if (!integral && error >= remainder) return digits::error;
- if (size < precision) return digits::more;
- if (!integral) {
- // Check if error * 2 < divisor with overflow prevention.
- // The check is not needed for the integral part because error = 1
- // and divisor > (1 << 32) there.
- if (error >= divisor || error >= divisor - error) return digits::error;
- } else {
- FMT_ASSERT(error == 1 && divisor > 2, "");
- }
- auto dir = get_round_direction(divisor, remainder, error);
- if (dir != round_direction::up)
- return dir == round_direction::down ? digits::done : digits::error;
- ++buf[size - 1];
- for (int i = size - 1; i > 0 && buf[i] > '9'; --i) {
- buf[i] = '0';
- ++buf[i - 1];
- }
- if (buf[0] > '9') {
- buf[0] = '1';
- if (fixed)
- buf[size++] = '0';
- else
- ++exp10;
- }
- return digits::done;
- }
- };
- inline FMT_CONSTEXPR20 void adjust_precision(int& precision, int exp10) {
- // Adjust fixed precision by exponent because it is relative to decimal
- // point.
- if (exp10 > 0 && precision > max_value<int>() - exp10)
- FMT_THROW(format_error("number is too big"));
- precision += exp10;
- }
- // Generates output using the Grisu digit-gen algorithm.
- // error: the size of the region (lower, upper) outside of which numbers
- // definitely do not round to value (Delta in Grisu3).
- FMT_INLINE FMT_CONSTEXPR20 auto grisu_gen_digits(fp value, uint64_t error,
- int& exp,
- gen_digits_handler& handler)
- -> digits::result {
- const fp one(1ULL << -value.e, value.e);
- // The integral part of scaled value (p1 in Grisu) = value / one. It cannot be
- // zero because it contains a product of two 64-bit numbers with MSB set (due
- // to normalization) - 1, shifted right by at most 60 bits.
- auto integral = static_cast<uint32_t>(value.f >> -one.e);
- FMT_ASSERT(integral != 0, "");
- FMT_ASSERT(integral == value.f >> -one.e, "");
- // The fractional part of scaled value (p2 in Grisu) c = value % one.
- uint64_t fractional = value.f & (one.f - 1);
- exp = count_digits(integral); // kappa in Grisu.
- // Non-fixed formats require at least one digit and no precision adjustment.
- if (handler.fixed) {
- adjust_precision(handler.precision, exp + handler.exp10);
- // Check if precision is satisfied just by leading zeros, e.g.
- // format("{:.2f}", 0.001) gives "0.00" without generating any digits.
- if (handler.precision <= 0) {
- if (handler.precision < 0) return digits::done;
- // Divide by 10 to prevent overflow.
- uint64_t divisor = data::power_of_10_64[exp - 1] << -one.e;
- auto dir = get_round_direction(divisor, value.f / 10, error * 10);
- if (dir == round_direction::unknown) return digits::error;
- handler.buf[handler.size++] = dir == round_direction::up ? '1' : '0';
- return digits::done;
- }
- }
- // Generate digits for the integral part. This can produce up to 10 digits.
- do {
- uint32_t digit = 0;
- auto divmod_integral = [&](uint32_t divisor) {
- digit = integral / divisor;
- integral %= divisor;
- };
- // This optimization by Milo Yip reduces the number of integer divisions by
- // one per iteration.
- switch (exp) {
- case 10:
- divmod_integral(1000000000);
- break;
- case 9:
- divmod_integral(100000000);
- break;
- case 8:
- divmod_integral(10000000);
- break;
- case 7:
- divmod_integral(1000000);
- break;
- case 6:
- divmod_integral(100000);
- break;
- case 5:
- divmod_integral(10000);
- break;
- case 4:
- divmod_integral(1000);
- break;
- case 3:
- divmod_integral(100);
- break;
- case 2:
- divmod_integral(10);
- break;
- case 1:
- digit = integral;
- integral = 0;
- break;
- default:
- FMT_ASSERT(false, "invalid number of digits");
- }
- --exp;
- auto remainder = (static_cast<uint64_t>(integral) << -one.e) + fractional;
- auto result = handler.on_digit(static_cast<char>('0' + digit),
- data::power_of_10_64[exp] << -one.e,
- remainder, error, true);
- if (result != digits::more) return result;
- } while (exp > 0);
- // Generate digits for the fractional part.
- for (;;) {
- fractional *= 10;
- error *= 10;
- char digit = static_cast<char>('0' + (fractional >> -one.e));
- fractional &= one.f - 1;
- --exp;
- auto result = handler.on_digit(digit, one.f, fractional, error, false);
- if (result != digits::more) return result;
- }
- }
- class bigint {
- private:
- // A bigint is stored as an array of bigits (big digits), with bigit at index
- // 0 being the least significant one.
- using bigit = uint32_t;
- using double_bigit = uint64_t;
- enum { bigits_capacity = 32 };
- basic_memory_buffer<bigit, bigits_capacity> bigits_;
- int exp_;
- FMT_CONSTEXPR20 bigit operator[](int index) const {
- return bigits_[to_unsigned(index)];
- }
- FMT_CONSTEXPR20 bigit& operator[](int index) {
- return bigits_[to_unsigned(index)];
- }
- static constexpr const int bigit_bits = num_bits<bigit>();
- friend struct formatter<bigint>;
- FMT_CONSTEXPR20 void subtract_bigits(int index, bigit other, bigit& borrow) {
- auto result = static_cast<double_bigit>((*this)[index]) - other - borrow;
- (*this)[index] = static_cast<bigit>(result);
- borrow = static_cast<bigit>(result >> (bigit_bits * 2 - 1));
- }
- FMT_CONSTEXPR20 void remove_leading_zeros() {
- int num_bigits = static_cast<int>(bigits_.size()) - 1;
- while (num_bigits > 0 && (*this)[num_bigits] == 0) --num_bigits;
- bigits_.resize(to_unsigned(num_bigits + 1));
- }
- // Computes *this -= other assuming aligned bigints and *this >= other.
- FMT_CONSTEXPR20 void subtract_aligned(const bigint& other) {
- FMT_ASSERT(other.exp_ >= exp_, "unaligned bigints");
- FMT_ASSERT(compare(*this, other) >= 0, "");
- bigit borrow = 0;
- int i = other.exp_ - exp_;
- for (size_t j = 0, n = other.bigits_.size(); j != n; ++i, ++j)
- subtract_bigits(i, other.bigits_[j], borrow);
- while (borrow > 0) subtract_bigits(i, 0, borrow);
- remove_leading_zeros();
- }
- FMT_CONSTEXPR20 void multiply(uint32_t value) {
- const double_bigit wide_value = value;
- bigit carry = 0;
- for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
- double_bigit result = bigits_[i] * wide_value + carry;
- bigits_[i] = static_cast<bigit>(result);
- carry = static_cast<bigit>(result >> bigit_bits);
- }
- if (carry != 0) bigits_.push_back(carry);
- }
- template <typename UInt, FMT_ENABLE_IF(std::is_same<UInt, uint64_t>::value ||
- std::is_same<UInt, uint128_t>::value)>
- FMT_CONSTEXPR20 void multiply(UInt value) {
- using half_uint =
- conditional_t<std::is_same<UInt, uint128_t>::value, uint64_t, uint32_t>;
- const int shift = num_bits<half_uint>() - bigit_bits;
- const UInt lower = static_cast<half_uint>(value);
- const UInt upper = value >> num_bits<half_uint>();
- UInt carry = 0;
- for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
- UInt result = lower * bigits_[i] + static_cast<bigit>(carry);
- carry = (upper * bigits_[i] << shift) + (result >> bigit_bits) +
- (carry >> bigit_bits);
- bigits_[i] = static_cast<bigit>(result);
- }
- while (carry != 0) {
- bigits_.push_back(static_cast<bigit>(carry));
- carry >>= bigit_bits;
- }
- }
- template <typename UInt, FMT_ENABLE_IF(std::is_same<UInt, uint64_t>::value ||
- std::is_same<UInt, uint128_t>::value)>
- FMT_CONSTEXPR20 void assign(UInt n) {
- size_t num_bigits = 0;
- do {
- bigits_[num_bigits++] = static_cast<bigit>(n);
- n >>= bigit_bits;
- } while (n != 0);
- bigits_.resize(num_bigits);
- exp_ = 0;
- }
- public:
- FMT_CONSTEXPR20 bigint() : exp_(0) {}
- explicit bigint(uint64_t n) { assign(n); }
- bigint(const bigint&) = delete;
- void operator=(const bigint&) = delete;
- FMT_CONSTEXPR20 void assign(const bigint& other) {
- auto size = other.bigits_.size();
- bigits_.resize(size);
- auto data = other.bigits_.data();
- std::copy(data, data + size, make_checked(bigits_.data(), size));
- exp_ = other.exp_;
- }
- template <typename Int> FMT_CONSTEXPR20 void operator=(Int n) {
- FMT_ASSERT(n > 0, "");
- assign(uint64_or_128_t<Int>(n));
- }
- FMT_CONSTEXPR20 int num_bigits() const {
- return static_cast<int>(bigits_.size()) + exp_;
- }
- FMT_NOINLINE FMT_CONSTEXPR20 bigint& operator<<=(int shift) {
- FMT_ASSERT(shift >= 0, "");
- exp_ += shift / bigit_bits;
- shift %= bigit_bits;
- if (shift == 0) return *this;
- bigit carry = 0;
- for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
- bigit c = bigits_[i] >> (bigit_bits - shift);
- bigits_[i] = (bigits_[i] << shift) + carry;
- carry = c;
- }
- if (carry != 0) bigits_.push_back(carry);
- return *this;
- }
- template <typename Int> FMT_CONSTEXPR20 bigint& operator*=(Int value) {
- FMT_ASSERT(value > 0, "");
- multiply(uint32_or_64_or_128_t<Int>(value));
- return *this;
- }
- friend FMT_CONSTEXPR20 int compare(const bigint& lhs, const bigint& rhs) {
- int num_lhs_bigits = lhs.num_bigits(), num_rhs_bigits = rhs.num_bigits();
- if (num_lhs_bigits != num_rhs_bigits)
- return num_lhs_bigits > num_rhs_bigits ? 1 : -1;
- int i = static_cast<int>(lhs.bigits_.size()) - 1;
- int j = static_cast<int>(rhs.bigits_.size()) - 1;
- int end = i - j;
- if (end < 0) end = 0;
- for (; i >= end; --i, --j) {
- bigit lhs_bigit = lhs[i], rhs_bigit = rhs[j];
- if (lhs_bigit != rhs_bigit) return lhs_bigit > rhs_bigit ? 1 : -1;
- }
- if (i != j) return i > j ? 1 : -1;
- return 0;
- }
- // Returns compare(lhs1 + lhs2, rhs).
- friend FMT_CONSTEXPR20 int add_compare(const bigint& lhs1, const bigint& lhs2,
- const bigint& rhs) {
- auto minimum = [](int a, int b) { return a < b ? a : b; };
- auto maximum = [](int a, int b) { return a > b ? a : b; };
- int max_lhs_bigits = maximum(lhs1.num_bigits(), lhs2.num_bigits());
- int num_rhs_bigits = rhs.num_bigits();
- if (max_lhs_bigits + 1 < num_rhs_bigits) return -1;
- if (max_lhs_bigits > num_rhs_bigits) return 1;
- auto get_bigit = [](const bigint& n, int i) -> bigit {
- return i >= n.exp_ && i < n.num_bigits() ? n[i - n.exp_] : 0;
- };
- double_bigit borrow = 0;
- int min_exp = minimum(minimum(lhs1.exp_, lhs2.exp_), rhs.exp_);
- for (int i = num_rhs_bigits - 1; i >= min_exp; --i) {
- double_bigit sum =
- static_cast<double_bigit>(get_bigit(lhs1, i)) + get_bigit(lhs2, i);
- bigit rhs_bigit = get_bigit(rhs, i);
- if (sum > rhs_bigit + borrow) return 1;
- borrow = rhs_bigit + borrow - sum;
- if (borrow > 1) return -1;
- borrow <<= bigit_bits;
- }
- return borrow != 0 ? -1 : 0;
- }
- // Assigns pow(10, exp) to this bigint.
- FMT_CONSTEXPR20 void assign_pow10(int exp) {
- FMT_ASSERT(exp >= 0, "");
- if (exp == 0) return *this = 1;
- // Find the top bit.
- int bitmask = 1;
- while (exp >= bitmask) bitmask <<= 1;
- bitmask >>= 1;
- // pow(10, exp) = pow(5, exp) * pow(2, exp). First compute pow(5, exp) by
- // repeated squaring and multiplication.
- *this = 5;
- bitmask >>= 1;
- while (bitmask != 0) {
- square();
- if ((exp & bitmask) != 0) *this *= 5;
- bitmask >>= 1;
- }
- *this <<= exp; // Multiply by pow(2, exp) by shifting.
- }
- FMT_CONSTEXPR20 void square() {
- int num_bigits = static_cast<int>(bigits_.size());
- int num_result_bigits = 2 * num_bigits;
- basic_memory_buffer<bigit, bigits_capacity> n(std::move(bigits_));
- bigits_.resize(to_unsigned(num_result_bigits));
- auto sum = uint128_t();
- for (int bigit_index = 0; bigit_index < num_bigits; ++bigit_index) {
- // Compute bigit at position bigit_index of the result by adding
- // cross-product terms n[i] * n[j] such that i + j == bigit_index.
- for (int i = 0, j = bigit_index; j >= 0; ++i, --j) {
- // Most terms are multiplied twice which can be optimized in the future.
- sum += static_cast<double_bigit>(n[i]) * n[j];
- }
- (*this)[bigit_index] = static_cast<bigit>(sum);
- sum >>= num_bits<bigit>(); // Compute the carry.
- }
- // Do the same for the top half.
- for (int bigit_index = num_bigits; bigit_index < num_result_bigits;
- ++bigit_index) {
- for (int j = num_bigits - 1, i = bigit_index - j; i < num_bigits;)
- sum += static_cast<double_bigit>(n[i++]) * n[j--];
- (*this)[bigit_index] = static_cast<bigit>(sum);
- sum >>= num_bits<bigit>();
- }
- remove_leading_zeros();
- exp_ *= 2;
- }
- // If this bigint has a bigger exponent than other, adds trailing zero to make
- // exponents equal. This simplifies some operations such as subtraction.
- FMT_CONSTEXPR20 void align(const bigint& other) {
- int exp_difference = exp_ - other.exp_;
- if (exp_difference <= 0) return;
- int num_bigits = static_cast<int>(bigits_.size());
- bigits_.resize(to_unsigned(num_bigits + exp_difference));
- for (int i = num_bigits - 1, j = i + exp_difference; i >= 0; --i, --j)
- bigits_[j] = bigits_[i];
- std::uninitialized_fill_n(bigits_.data(), exp_difference, 0);
- exp_ -= exp_difference;
- }
- // Divides this bignum by divisor, assigning the remainder to this and
- // returning the quotient.
- FMT_CONSTEXPR20 int divmod_assign(const bigint& divisor) {
- FMT_ASSERT(this != &divisor, "");
- if (compare(*this, divisor) < 0) return 0;
- FMT_ASSERT(divisor.bigits_[divisor.bigits_.size() - 1u] != 0, "");
- align(divisor);
- int quotient = 0;
- do {
- subtract_aligned(divisor);
- ++quotient;
- } while (compare(*this, divisor) >= 0);
- return quotient;
- }
- };
- // format_dragon flags.
- enum dragon {
- predecessor_closer = 1,
- fixup = 2, // Run fixup to correct exp10 which can be off by one.
- fixed = 4,
- };
- // Formats a floating-point number using a variation of the Fixed-Precision
- // Positive Floating-Point Printout ((FPP)^2) algorithm by Steele & White:
- // https://fmt.dev/papers/p372-steele.pdf.
- FMT_CONSTEXPR20 inline void format_dragon(basic_fp<uint128_t> value,
- unsigned flags, int num_digits,
- buffer<char>& buf, int& exp10) {
- bigint numerator; // 2 * R in (FPP)^2.
- bigint denominator; // 2 * S in (FPP)^2.
- // lower and upper are differences between value and corresponding boundaries.
- bigint lower; // (M^- in (FPP)^2).
- bigint upper_store; // upper's value if different from lower.
- bigint* upper = nullptr; // (M^+ in (FPP)^2).
- // Shift numerator and denominator by an extra bit or two (if lower boundary
- // is closer) to make lower and upper integers. This eliminates multiplication
- // by 2 during later computations.
- bool is_predecessor_closer = (flags & dragon::predecessor_closer) != 0;
- int shift = is_predecessor_closer ? 2 : 1;
- if (value.e >= 0) {
- numerator = value.f;
- numerator <<= value.e + shift;
- lower = 1;
- lower <<= value.e;
- if (is_predecessor_closer) {
- upper_store = 1;
- upper_store <<= value.e + 1;
- upper = &upper_store;
- }
- denominator.assign_pow10(exp10);
- denominator <<= shift;
- } else if (exp10 < 0) {
- numerator.assign_pow10(-exp10);
- lower.assign(numerator);
- if (is_predecessor_closer) {
- upper_store.assign(numerator);
- upper_store <<= 1;
- upper = &upper_store;
- }
- numerator *= value.f;
- numerator <<= shift;
- denominator = 1;
- denominator <<= shift - value.e;
- } else {
- numerator = value.f;
- numerator <<= shift;
- denominator.assign_pow10(exp10);
- denominator <<= shift - value.e;
- lower = 1;
- if (is_predecessor_closer) {
- upper_store = 1ULL << 1;
- upper = &upper_store;
- }
- }
- int even = static_cast<int>((value.f & 1) == 0);
- if (!upper) upper = &lower;
- if ((flags & dragon::fixup) != 0) {
- if (add_compare(numerator, *upper, denominator) + even <= 0) {
- --exp10;
- numerator *= 10;
- if (num_digits < 0) {
- lower *= 10;
- if (upper != &lower) *upper *= 10;
- }
- }
- if ((flags & dragon::fixed) != 0) adjust_precision(num_digits, exp10 + 1);
- }
- // Invariant: value == (numerator / denominator) * pow(10, exp10).
- if (num_digits < 0) {
- // Generate the shortest representation.
- num_digits = 0;
- char* data = buf.data();
- for (;;) {
- int digit = numerator.divmod_assign(denominator);
- bool low = compare(numerator, lower) - even < 0; // numerator <[=] lower.
- // numerator + upper >[=] pow10:
- bool high = add_compare(numerator, *upper, denominator) + even > 0;
- data[num_digits++] = static_cast<char>('0' + digit);
- if (low || high) {
- if (!low) {
- ++data[num_digits - 1];
- } else if (high) {
- int result = add_compare(numerator, numerator, denominator);
- // Round half to even.
- if (result > 0 || (result == 0 && (digit % 2) != 0))
- ++data[num_digits - 1];
- }
- buf.try_resize(to_unsigned(num_digits));
- exp10 -= num_digits - 1;
- return;
- }
- numerator *= 10;
- lower *= 10;
- if (upper != &lower) *upper *= 10;
- }
- }
- // Generate the given number of digits.
- exp10 -= num_digits - 1;
- if (num_digits == 0) {
- denominator *= 10;
- auto digit = add_compare(numerator, numerator, denominator) > 0 ? '1' : '0';
- buf.push_back(digit);
- return;
- }
- buf.try_resize(to_unsigned(num_digits));
- for (int i = 0; i < num_digits - 1; ++i) {
- int digit = numerator.divmod_assign(denominator);
- buf[i] = static_cast<char>('0' + digit);
- numerator *= 10;
- }
- int digit = numerator.divmod_assign(denominator);
- auto result = add_compare(numerator, numerator, denominator);
- if (result > 0 || (result == 0 && (digit % 2) != 0)) {
- if (digit == 9) {
- const auto overflow = '0' + 10;
- buf[num_digits - 1] = overflow;
- // Propagate the carry.
- for (int i = num_digits - 1; i > 0 && buf[i] == overflow; --i) {
- buf[i] = '0';
- ++buf[i - 1];
- }
- if (buf[0] == overflow) {
- buf[0] = '1';
- ++exp10;
- }
- return;
- }
- ++digit;
- }
- buf[num_digits - 1] = static_cast<char>('0' + digit);
- }
- template <typename Float>
- FMT_CONSTEXPR20 auto format_float(Float value, int precision, float_specs specs,
- buffer<char>& buf) -> int {
- // float is passed as double to reduce the number of instantiations.
- static_assert(!std::is_same<Float, float>::value, "");
- FMT_ASSERT(value >= 0, "value is negative");
- auto converted_value = convert_float(value);
- const bool fixed = specs.format == float_format::fixed;
- if (value <= 0) { // <= instead of == to silence a warning.
- if (precision <= 0 || !fixed) {
- buf.push_back('0');
- return 0;
- }
- buf.try_resize(to_unsigned(precision));
- fill_n(buf.data(), precision, '0');
- return -precision;
- }
- int exp = 0;
- bool use_dragon = true;
- unsigned dragon_flags = 0;
- if (!is_fast_float<Float>()) {
- const auto inv_log2_10 = 0.3010299956639812; // 1 / log2(10)
- using info = dragonbox::float_info<decltype(converted_value)>;
- const auto f = basic_fp<typename info::carrier_uint>(converted_value);
- // Compute exp, an approximate power of 10, such that
- // 10^(exp - 1) <= value < 10^exp or 10^exp <= value < 10^(exp + 1).
- // This is based on log10(value) == log2(value) / log2(10) and approximation
- // of log2(value) by e + num_fraction_bits idea from double-conversion.
- exp = static_cast<int>(
- std::ceil((f.e + count_digits<1>(f.f) - 1) * inv_log2_10 - 1e-10));
- dragon_flags = dragon::fixup;
- } else if (!is_constant_evaluated() && precision < 0) {
- // Use Dragonbox for the shortest format.
- if (specs.binary32) {
- auto dec = dragonbox::to_decimal(static_cast<float>(value));
- write<char>(buffer_appender<char>(buf), dec.significand);
- return dec.exponent;
- }
- auto dec = dragonbox::to_decimal(static_cast<double>(value));
- write<char>(buffer_appender<char>(buf), dec.significand);
- return dec.exponent;
- } else {
- // Use Grisu + Dragon4 for the given precision:
- // https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf.
- const int min_exp = -60; // alpha in Grisu.
- int cached_exp10 = 0; // K in Grisu.
- fp normalized = normalize(fp(converted_value));
- const auto cached_pow = get_cached_power(
- min_exp - (normalized.e + fp::num_significand_bits), cached_exp10);
- normalized = normalized * cached_pow;
- gen_digits_handler handler{buf.data(), 0, precision, -cached_exp10, fixed};
- if (grisu_gen_digits(normalized, 1, exp, handler) != digits::error &&
- !is_constant_evaluated()) {
- exp += handler.exp10;
- buf.try_resize(to_unsigned(handler.size));
- use_dragon = false;
- } else {
- exp += handler.size - cached_exp10 - 1;
- precision = handler.precision;
- }
- }
- if (use_dragon) {
- auto f = basic_fp<uint128_t>();
- bool is_predecessor_closer = specs.binary32
- ? f.assign(static_cast<float>(value))
- : f.assign(converted_value);
- if (is_predecessor_closer) dragon_flags |= dragon::predecessor_closer;
- if (fixed) dragon_flags |= dragon::fixed;
- // Limit precision to the maximum possible number of significant digits in
- // an IEEE754 double because we don't need to generate zeros.
- const int max_double_digits = 767;
- if (precision > max_double_digits) precision = max_double_digits;
- format_dragon(f, dragon_flags, precision, buf, exp);
- }
- if (!fixed && !specs.showpoint) {
- // Remove trailing zeros.
- auto num_digits = buf.size();
- while (num_digits > 0 && buf[num_digits - 1] == '0') {
- --num_digits;
- ++exp;
- }
- buf.try_resize(num_digits);
- }
- return exp;
- }
- template <typename Char, typename OutputIt, typename T,
- FMT_ENABLE_IF(is_floating_point<T>::value)>
- FMT_CONSTEXPR20 auto write(OutputIt out, T value,
- basic_format_specs<Char> specs, locale_ref loc = {})
- -> OutputIt {
- if (const_check(!is_supported_floating_point(value))) return out;
- float_specs fspecs = parse_float_type_spec(specs);
- fspecs.sign = specs.sign;
- if (detail::signbit(value)) { // value < 0 is false for NaN so use signbit.
- fspecs.sign = sign::minus;
- value = -value;
- } else if (fspecs.sign == sign::minus) {
- fspecs.sign = sign::none;
- }
- if (!detail::isfinite(value))
- return write_nonfinite(out, detail::isnan(value), specs, fspecs);
- if (specs.align == align::numeric && fspecs.sign) {
- auto it = reserve(out, 1);
- *it++ = detail::sign<Char>(fspecs.sign);
- out = base_iterator(out, it);
- fspecs.sign = sign::none;
- if (specs.width != 0) --specs.width;
- }
- memory_buffer buffer;
- if (fspecs.format == float_format::hex) {
- if (fspecs.sign) buffer.push_back(detail::sign<char>(fspecs.sign));
- snprintf_float(convert_float(value), specs.precision, fspecs, buffer);
- return write_bytes<align::right>(out, {buffer.data(), buffer.size()},
- specs);
- }
- int precision = specs.precision >= 0 || specs.type == presentation_type::none
- ? specs.precision
- : 6;
- if (fspecs.format == float_format::exp) {
- if (precision == max_value<int>())
- throw_format_error("number is too big");
- else
- ++precision;
- } else if (fspecs.format != float_format::fixed && precision == 0) {
- precision = 1;
- }
- if (const_check(std::is_same<T, float>())) fspecs.binary32 = true;
- int exp = format_float(convert_float(value), precision, fspecs, buffer);
- fspecs.precision = precision;
- auto f = big_decimal_fp{buffer.data(), static_cast<int>(buffer.size()), exp};
- return write_float(out, f, specs, fspecs, loc);
- }
- template <typename Char, typename OutputIt, typename T,
- FMT_ENABLE_IF(is_fast_float<T>::value)>
- FMT_CONSTEXPR20 auto write(OutputIt out, T value) -> OutputIt {
- if (is_constant_evaluated())
- return write(out, value, basic_format_specs<Char>());
- if (const_check(!is_supported_floating_point(value))) return out;
- auto fspecs = float_specs();
- if (detail::signbit(value)) {
- fspecs.sign = sign::minus;
- value = -value;
- }
- constexpr auto specs = basic_format_specs<Char>();
- using floaty = conditional_t<std::is_same<T, long double>::value, double, T>;
- using uint = typename dragonbox::float_info<floaty>::carrier_uint;
- uint mask = exponent_mask<floaty>();
- if ((bit_cast<uint>(value) & mask) == mask)
- return write_nonfinite(out, std::isnan(value), specs, fspecs);
- auto dec = dragonbox::to_decimal(static_cast<floaty>(value));
- return write_float(out, dec, specs, fspecs, {});
- }
- template <typename Char, typename OutputIt, typename T,
- FMT_ENABLE_IF(is_floating_point<T>::value &&
- !is_fast_float<T>::value)>
- inline auto write(OutputIt out, T value) -> OutputIt {
- return write(out, value, basic_format_specs<Char>());
- }
- template <typename Char, typename OutputIt>
- auto write(OutputIt out, monostate, basic_format_specs<Char> = {},
- locale_ref = {}) -> OutputIt {
- FMT_ASSERT(false, "");
- return out;
- }
- template <typename Char, typename OutputIt>
- FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> value)
- -> OutputIt {
- auto it = reserve(out, value.size());
- it = copy_str_noinline<Char>(value.begin(), value.end(), it);
- return base_iterator(out, it);
- }
- template <typename Char, typename OutputIt, typename T,
- FMT_ENABLE_IF(is_string<T>::value)>
- constexpr auto write(OutputIt out, const T& value) -> OutputIt {
- return write<Char>(out, to_string_view(value));
- }
- // FMT_ENABLE_IF() condition separated to workaround an MSVC bug.
- template <
- typename Char, typename OutputIt, typename T,
- bool check =
- std::is_enum<T>::value && !std::is_same<T, Char>::value &&
- mapped_type_constant<T, basic_format_context<OutputIt, Char>>::value !=
- type::custom_type,
- FMT_ENABLE_IF(check)>
- FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt {
- return write<Char>(out, static_cast<underlying_t<T>>(value));
- }
- template <typename Char, typename OutputIt, typename T,
- FMT_ENABLE_IF(std::is_same<T, bool>::value)>
- FMT_CONSTEXPR auto write(OutputIt out, T value,
- const basic_format_specs<Char>& specs = {},
- locale_ref = {}) -> OutputIt {
- return specs.type != presentation_type::none &&
- specs.type != presentation_type::string
- ? write(out, value ? 1 : 0, specs, {})
- : write_bytes(out, value ? "true" : "false", specs);
- }
- template <typename Char, typename OutputIt>
- FMT_CONSTEXPR auto write(OutputIt out, Char value) -> OutputIt {
- auto it = reserve(out, 1);
- *it++ = value;
- return base_iterator(out, it);
- }
- template <typename Char, typename OutputIt>
- FMT_CONSTEXPR_CHAR_TRAITS auto write(OutputIt out, const Char* value)
- -> OutputIt {
- if (!value) {
- throw_format_error("string pointer is null");
- } else {
- out = write(out, basic_string_view<Char>(value));
- }
- return out;
- }
- template <typename Char, typename OutputIt, typename T,
- FMT_ENABLE_IF(std::is_same<T, void>::value)>
- auto write(OutputIt out, const T* value,
- const basic_format_specs<Char>& specs = {}, locale_ref = {})
- -> OutputIt {
- check_pointer_type_spec(specs.type, error_handler());
- return write_ptr<Char>(out, bit_cast<uintptr_t>(value), &specs);
- }
- // A write overload that handles implicit conversions.
- template <typename Char, typename OutputIt, typename T,
- typename Context = basic_format_context<OutputIt, Char>>
- FMT_CONSTEXPR auto write(OutputIt out, const T& value) -> enable_if_t<
- std::is_class<T>::value && !is_string<T>::value &&
- !is_floating_point<T>::value && !std::is_same<T, Char>::value &&
- !std::is_same<const T&,
- decltype(arg_mapper<Context>().map(value))>::value,
- OutputIt> {
- return write<Char>(out, arg_mapper<Context>().map(value));
- }
- template <typename Char, typename OutputIt, typename T,
- typename Context = basic_format_context<OutputIt, Char>>
- FMT_CONSTEXPR auto write(OutputIt out, const T& value)
- -> enable_if_t<mapped_type_constant<T, Context>::value == type::custom_type,
- OutputIt> {
- using formatter_type =
- conditional_t<has_formatter<T, Context>::value,
- typename Context::template formatter_type<T>,
- fallback_formatter<T, Char>>;
- auto ctx = Context(out, {}, {});
- return formatter_type().format(value, ctx);
- }
- // An argument visitor that formats the argument and writes it via the output
- // iterator. It's a class and not a generic lambda for compatibility with C++11.
- template <typename Char> struct default_arg_formatter {
- using iterator = buffer_appender<Char>;
- using context = buffer_context<Char>;
- iterator out;
- basic_format_args<context> args;
- locale_ref loc;
- template <typename T> auto operator()(T value) -> iterator {
- return write<Char>(out, value);
- }
- auto operator()(typename basic_format_arg<context>::handle h) -> iterator {
- basic_format_parse_context<Char> parse_ctx({});
- context format_ctx(out, args, loc);
- h.format(parse_ctx, format_ctx);
- return format_ctx.out();
- }
- };
- template <typename Char> struct arg_formatter {
- using iterator = buffer_appender<Char>;
- using context = buffer_context<Char>;
- iterator out;
- const basic_format_specs<Char>& specs;
- locale_ref locale;
- template <typename T>
- FMT_CONSTEXPR FMT_INLINE auto operator()(T value) -> iterator {
- return detail::write(out, value, specs, locale);
- }
- auto operator()(typename basic_format_arg<context>::handle) -> iterator {
- // User-defined types are handled separately because they require access
- // to the parse context.
- return out;
- }
- };
- template <typename Char> struct custom_formatter {
- basic_format_parse_context<Char>& parse_ctx;
- buffer_context<Char>& ctx;
- void operator()(
- typename basic_format_arg<buffer_context<Char>>::handle h) const {
- h.format(parse_ctx, ctx);
- }
- template <typename T> void operator()(T) const {}
- };
- template <typename T>
- using is_integer =
- bool_constant<is_integral<T>::value && !std::is_same<T, bool>::value &&
- !std::is_same<T, char>::value &&
- !std::is_same<T, wchar_t>::value>;
- template <typename ErrorHandler> class width_checker {
- public:
- explicit FMT_CONSTEXPR width_checker(ErrorHandler& eh) : handler_(eh) {}
- template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
- FMT_CONSTEXPR auto operator()(T value) -> unsigned long long {
- if (is_negative(value)) handler_.on_error("negative width");
- return static_cast<unsigned long long>(value);
- }
- template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
- FMT_CONSTEXPR auto operator()(T) -> unsigned long long {
- handler_.on_error("width is not integer");
- return 0;
- }
- private:
- ErrorHandler& handler_;
- };
- template <typename ErrorHandler> class precision_checker {
- public:
- explicit FMT_CONSTEXPR precision_checker(ErrorHandler& eh) : handler_(eh) {}
- template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
- FMT_CONSTEXPR auto operator()(T value) -> unsigned long long {
- if (is_negative(value)) handler_.on_error("negative precision");
- return static_cast<unsigned long long>(value);
- }
- template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
- FMT_CONSTEXPR auto operator()(T) -> unsigned long long {
- handler_.on_error("precision is not integer");
- return 0;
- }
- private:
- ErrorHandler& handler_;
- };
- template <template <typename> class Handler, typename FormatArg,
- typename ErrorHandler>
- FMT_CONSTEXPR auto get_dynamic_spec(FormatArg arg, ErrorHandler eh) -> int {
- unsigned long long value = visit_format_arg(Handler<ErrorHandler>(eh), arg);
- if (value > to_unsigned(max_value<int>())) eh.on_error("number is too big");
- return static_cast<int>(value);
- }
- template <typename Context, typename ID>
- FMT_CONSTEXPR auto get_arg(Context& ctx, ID id) ->
- typename Context::format_arg {
- auto arg = ctx.arg(id);
- if (!arg) ctx.on_error("argument not found");
- return arg;
- }
- // The standard format specifier handler with checking.
- template <typename Char> class specs_handler : public specs_setter<Char> {
- private:
- basic_format_parse_context<Char>& parse_context_;
- buffer_context<Char>& context_;
- // This is only needed for compatibility with gcc 4.4.
- using format_arg = basic_format_arg<buffer_context<Char>>;
- FMT_CONSTEXPR auto get_arg(auto_id) -> format_arg {
- return detail::get_arg(context_, parse_context_.next_arg_id());
- }
- FMT_CONSTEXPR auto get_arg(int arg_id) -> format_arg {
- parse_context_.check_arg_id(arg_id);
- return detail::get_arg(context_, arg_id);
- }
- FMT_CONSTEXPR auto get_arg(basic_string_view<Char> arg_id) -> format_arg {
- parse_context_.check_arg_id(arg_id);
- return detail::get_arg(context_, arg_id);
- }
- public:
- FMT_CONSTEXPR specs_handler(basic_format_specs<Char>& specs,
- basic_format_parse_context<Char>& parse_ctx,
- buffer_context<Char>& ctx)
- : specs_setter<Char>(specs), parse_context_(parse_ctx), context_(ctx) {}
- template <typename Id> FMT_CONSTEXPR void on_dynamic_width(Id arg_id) {
- this->specs_.width = get_dynamic_spec<width_checker>(
- get_arg(arg_id), context_.error_handler());
- }
- template <typename Id> FMT_CONSTEXPR void on_dynamic_precision(Id arg_id) {
- this->specs_.precision = get_dynamic_spec<precision_checker>(
- get_arg(arg_id), context_.error_handler());
- }
- void on_error(const char* message) { context_.on_error(message); }
- };
- template <template <typename> class Handler, typename Context>
- FMT_CONSTEXPR void handle_dynamic_spec(int& value,
- arg_ref<typename Context::char_type> ref,
- Context& ctx) {
- switch (ref.kind) {
- case arg_id_kind::none:
- break;
- case arg_id_kind::index:
- value = detail::get_dynamic_spec<Handler>(ctx.arg(ref.val.index),
- ctx.error_handler());
- break;
- case arg_id_kind::name:
- value = detail::get_dynamic_spec<Handler>(ctx.arg(ref.val.name),
- ctx.error_handler());
- break;
- }
- }
- #if FMT_USE_USER_DEFINED_LITERALS
- template <typename Char> struct udl_formatter {
- basic_string_view<Char> str;
- template <typename... T>
- auto operator()(T&&... args) const -> std::basic_string<Char> {
- return vformat(str, fmt::make_format_args<buffer_context<Char>>(args...));
- }
- };
- # if FMT_USE_NONTYPE_TEMPLATE_ARGS
- template <typename T, typename Char, size_t N,
- fmt::detail_exported::fixed_string<Char, N> Str>
- struct statically_named_arg : view {
- static constexpr auto name = Str.data;
- const T& value;
- statically_named_arg(const T& v) : value(v) {}
- };
- template <typename T, typename Char, size_t N,
- fmt::detail_exported::fixed_string<Char, N> Str>
- struct is_named_arg<statically_named_arg<T, Char, N, Str>> : std::true_type {};
- template <typename T, typename Char, size_t N,
- fmt::detail_exported::fixed_string<Char, N> Str>
- struct is_statically_named_arg<statically_named_arg<T, Char, N, Str>>
- : std::true_type {};
- template <typename Char, size_t N,
- fmt::detail_exported::fixed_string<Char, N> Str>
- struct udl_arg {
- template <typename T> auto operator=(T&& value) const {
- return statically_named_arg<T, Char, N, Str>(std::forward<T>(value));
- }
- };
- # else
- template <typename Char> struct udl_arg {
- const Char* str;
- template <typename T> auto operator=(T&& value) const -> named_arg<Char, T> {
- return {str, std::forward<T>(value)};
- }
- };
- # endif
- #endif // FMT_USE_USER_DEFINED_LITERALS
- template <typename Locale, typename Char>
- auto vformat(const Locale& loc, basic_string_view<Char> format_str,
- basic_format_args<buffer_context<type_identity_t<Char>>> args)
- -> std::basic_string<Char> {
- basic_memory_buffer<Char> buffer;
- detail::vformat_to(buffer, format_str, args, detail::locale_ref(loc));
- return {buffer.data(), buffer.size()};
- }
- using format_func = void (*)(detail::buffer<char>&, int, const char*);
- FMT_API void format_error_code(buffer<char>& out, int error_code,
- string_view message) noexcept;
- FMT_API void report_error(format_func func, int error_code,
- const char* message) noexcept;
- FMT_END_DETAIL_NAMESPACE
- FMT_API auto vsystem_error(int error_code, string_view format_str,
- format_args args) -> std::system_error;
- /**
- \rst
- Constructs :class:`std::system_error` with a message formatted with
- ``fmt::format(fmt, args...)``.
- *error_code* is a system error code as given by ``errno``.
- **Example**::
- // This throws std::system_error with the description
- // cannot open file 'madeup': No such file or directory
- // or similar (system message may vary).
- const char* filename = "madeup";
- std::FILE* file = std::fopen(filename, "r");
- if (!file)
- throw fmt::system_error(errno, "cannot open file '{}'", filename);
- \endrst
- */
- template <typename... T>
- auto system_error(int error_code, format_string<T...> fmt, T&&... args)
- -> std::system_error {
- return vsystem_error(error_code, fmt, fmt::make_format_args(args...));
- }
- /**
- \rst
- Formats an error message for an error returned by an operating system or a
- language runtime, for example a file opening error, and writes it to *out*.
- The format is the same as the one used by ``std::system_error(ec, message)``
- where ``ec`` is ``std::error_code(error_code, std::generic_category()})``.
- It is implementation-defined but normally looks like:
- .. parsed-literal::
- *<message>*: *<system-message>*
- where *<message>* is the passed message and *<system-message>* is the system
- message corresponding to the error code.
- *error_code* is a system error code as given by ``errno``.
- \endrst
- */
- FMT_API void format_system_error(detail::buffer<char>& out, int error_code,
- const char* message) noexcept;
- // Reports a system error without throwing an exception.
- // Can be used to report errors from destructors.
- FMT_API void report_system_error(int error_code, const char* message) noexcept;
- /** Fast integer formatter. */
- class format_int {
- private:
- // Buffer should be large enough to hold all digits (digits10 + 1),
- // a sign and a null character.
- enum { buffer_size = std::numeric_limits<unsigned long long>::digits10 + 3 };
- mutable char buffer_[buffer_size];
- char* str_;
- template <typename UInt> auto format_unsigned(UInt value) -> char* {
- auto n = static_cast<detail::uint32_or_64_or_128_t<UInt>>(value);
- return detail::format_decimal(buffer_, n, buffer_size - 1).begin;
- }
- template <typename Int> auto format_signed(Int value) -> char* {
- auto abs_value = static_cast<detail::uint32_or_64_or_128_t<Int>>(value);
- bool negative = value < 0;
- if (negative) abs_value = 0 - abs_value;
- auto begin = format_unsigned(abs_value);
- if (negative) *--begin = '-';
- return begin;
- }
- public:
- explicit format_int(int value) : str_(format_signed(value)) {}
- explicit format_int(long value) : str_(format_signed(value)) {}
- explicit format_int(long long value) : str_(format_signed(value)) {}
- explicit format_int(unsigned value) : str_(format_unsigned(value)) {}
- explicit format_int(unsigned long value) : str_(format_unsigned(value)) {}
- explicit format_int(unsigned long long value)
- : str_(format_unsigned(value)) {}
- /** Returns the number of characters written to the output buffer. */
- auto size() const -> size_t {
- return detail::to_unsigned(buffer_ - str_ + buffer_size - 1);
- }
- /**
- Returns a pointer to the output buffer content. No terminating null
- character is appended.
- */
- auto data() const -> const char* { return str_; }
- /**
- Returns a pointer to the output buffer content with terminating null
- character appended.
- */
- auto c_str() const -> const char* {
- buffer_[buffer_size - 1] = '\0';
- return str_;
- }
- /**
- \rst
- Returns the content of the output buffer as an ``std::string``.
- \endrst
- */
- auto str() const -> std::string { return std::string(str_, size()); }
- };
- template <typename T, typename Char>
- template <typename FormatContext>
- FMT_CONSTEXPR FMT_INLINE auto
- formatter<T, Char,
- enable_if_t<detail::type_constant<T, Char>::value !=
- detail::type::custom_type>>::format(const T& val,
- FormatContext& ctx)
- const -> decltype(ctx.out()) {
- if (specs_.width_ref.kind != detail::arg_id_kind::none ||
- specs_.precision_ref.kind != detail::arg_id_kind::none) {
- auto specs = specs_;
- detail::handle_dynamic_spec<detail::width_checker>(specs.width,
- specs.width_ref, ctx);
- detail::handle_dynamic_spec<detail::precision_checker>(
- specs.precision, specs.precision_ref, ctx);
- return detail::write<Char>(ctx.out(), val, specs, ctx.locale());
- }
- return detail::write<Char>(ctx.out(), val, specs_, ctx.locale());
- }
- template <typename Char>
- struct formatter<void*, Char> : formatter<const void*, Char> {
- template <typename FormatContext>
- auto format(void* val, FormatContext& ctx) const -> decltype(ctx.out()) {
- return formatter<const void*, Char>::format(val, ctx);
- }
- };
- template <typename Char, size_t N>
- struct formatter<Char[N], Char> : formatter<basic_string_view<Char>, Char> {
- template <typename FormatContext>
- FMT_CONSTEXPR auto format(const Char* val, FormatContext& ctx) const
- -> decltype(ctx.out()) {
- return formatter<basic_string_view<Char>, Char>::format(val, ctx);
- }
- };
- // A formatter for types known only at run time such as variant alternatives.
- //
- // Usage:
- // using variant = std::variant<int, std::string>;
- // template <>
- // struct formatter<variant>: dynamic_formatter<> {
- // auto format(const variant& v, format_context& ctx) {
- // return visit([&](const auto& val) {
- // return dynamic_formatter<>::format(val, ctx);
- // }, v);
- // }
- // };
- template <typename Char = char> class dynamic_formatter {
- private:
- detail::dynamic_format_specs<Char> specs_;
- const Char* format_str_;
- struct null_handler : detail::error_handler {
- void on_align(align_t) {}
- void on_sign(sign_t) {}
- void on_hash() {}
- };
- template <typename Context> void handle_specs(Context& ctx) {
- detail::handle_dynamic_spec<detail::width_checker>(specs_.width,
- specs_.width_ref, ctx);
- detail::handle_dynamic_spec<detail::precision_checker>(
- specs_.precision, specs_.precision_ref, ctx);
- }
- public:
- template <typename ParseContext>
- FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
- format_str_ = ctx.begin();
- // Checks are deferred to formatting time when the argument type is known.
- detail::dynamic_specs_handler<ParseContext> handler(specs_, ctx);
- return detail::parse_format_specs(ctx.begin(), ctx.end(), handler);
- }
- template <typename T, typename FormatContext>
- auto format(const T& val, FormatContext& ctx) -> decltype(ctx.out()) {
- handle_specs(ctx);
- detail::specs_checker<null_handler> checker(
- null_handler(), detail::mapped_type_constant<T, FormatContext>::value);
- checker.on_align(specs_.align);
- if (specs_.sign != sign::none) checker.on_sign(specs_.sign);
- if (specs_.alt) checker.on_hash();
- if (specs_.precision >= 0) checker.end_precision();
- return detail::write<Char>(ctx.out(), val, specs_, ctx.locale());
- }
- };
- /**
- \rst
- Converts ``p`` to ``const void*`` for pointer formatting.
- **Example**::
- auto s = fmt::format("{}", fmt::ptr(p));
- \endrst
- */
- template <typename T> auto ptr(T p) -> const void* {
- static_assert(std::is_pointer<T>::value, "");
- return detail::bit_cast<const void*>(p);
- }
- template <typename T> auto ptr(const std::unique_ptr<T>& p) -> const void* {
- return p.get();
- }
- template <typename T> auto ptr(const std::shared_ptr<T>& p) -> const void* {
- return p.get();
- }
- /**
- \rst
- Converts ``e`` to the underlying type.
- **Example**::
- enum class color { red, green, blue };
- auto s = fmt::format("{}", fmt::underlying(color::red));
- \endrst
- */
- template <typename Enum>
- constexpr auto underlying(Enum e) noexcept -> underlying_t<Enum> {
- return static_cast<underlying_t<Enum>>(e);
- }
- namespace enums {
- template <typename Enum, FMT_ENABLE_IF(std::is_enum<Enum>::value)>
- constexpr auto format_as(Enum e) noexcept -> underlying_t<Enum> {
- return static_cast<underlying_t<Enum>>(e);
- }
- } // namespace enums
- class bytes {
- private:
- string_view data_;
- friend struct formatter<bytes>;
- public:
- explicit bytes(string_view data) : data_(data) {}
- };
- template <> struct formatter<bytes> {
- private:
- detail::dynamic_format_specs<char> specs_;
- public:
- template <typename ParseContext>
- FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
- using handler_type = detail::dynamic_specs_handler<ParseContext>;
- detail::specs_checker<handler_type> handler(handler_type(specs_, ctx),
- detail::type::string_type);
- auto it = parse_format_specs(ctx.begin(), ctx.end(), handler);
- detail::check_string_type_spec(specs_.type, ctx.error_handler());
- return it;
- }
- template <typename FormatContext>
- auto format(bytes b, FormatContext& ctx) -> decltype(ctx.out()) {
- detail::handle_dynamic_spec<detail::width_checker>(specs_.width,
- specs_.width_ref, ctx);
- detail::handle_dynamic_spec<detail::precision_checker>(
- specs_.precision, specs_.precision_ref, ctx);
- return detail::write_bytes(ctx.out(), b.data_, specs_);
- }
- };
- // group_digits_view is not derived from view because it copies the argument.
- template <typename T> struct group_digits_view { T value; };
- /**
- \rst
- Returns a view that formats an integer value using ',' as a locale-independent
- thousands separator.
- **Example**::
- fmt::print("{}", fmt::group_digits(12345));
- // Output: "12,345"
- \endrst
- */
- template <typename T> auto group_digits(T value) -> group_digits_view<T> {
- return {value};
- }
- template <typename T> struct formatter<group_digits_view<T>> : formatter<T> {
- private:
- detail::dynamic_format_specs<char> specs_;
- public:
- template <typename ParseContext>
- FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
- using handler_type = detail::dynamic_specs_handler<ParseContext>;
- detail::specs_checker<handler_type> handler(handler_type(specs_, ctx),
- detail::type::int_type);
- auto it = parse_format_specs(ctx.begin(), ctx.end(), handler);
- detail::check_string_type_spec(specs_.type, ctx.error_handler());
- return it;
- }
- template <typename FormatContext>
- auto format(group_digits_view<T> t, FormatContext& ctx)
- -> decltype(ctx.out()) {
- detail::handle_dynamic_spec<detail::width_checker>(specs_.width,
- specs_.width_ref, ctx);
- detail::handle_dynamic_spec<detail::precision_checker>(
- specs_.precision, specs_.precision_ref, ctx);
- return detail::write_int_localized(
- ctx.out(), static_cast<detail::uint64_or_128_t<T>>(t.value), 0, specs_,
- detail::digit_grouping<char>({"\3", ','}));
- }
- };
- template <typename It, typename Sentinel, typename Char = char>
- struct join_view : detail::view {
- It begin;
- Sentinel end;
- basic_string_view<Char> sep;
- join_view(It b, Sentinel e, basic_string_view<Char> s)
- : begin(b), end(e), sep(s) {}
- };
- template <typename It, typename Sentinel, typename Char>
- struct formatter<join_view<It, Sentinel, Char>, Char> {
- private:
- using value_type =
- #ifdef __cpp_lib_ranges
- std::iter_value_t<It>;
- #else
- typename std::iterator_traits<It>::value_type;
- #endif
- using context = buffer_context<Char>;
- using mapper = detail::arg_mapper<context>;
- template <typename T, FMT_ENABLE_IF(has_formatter<T, context>::value)>
- static auto map(const T& value) -> const T& {
- return value;
- }
- template <typename T, FMT_ENABLE_IF(!has_formatter<T, context>::value)>
- static auto map(const T& value) -> decltype(mapper().map(value)) {
- return mapper().map(value);
- }
- using formatter_type =
- conditional_t<is_formattable<value_type, Char>::value,
- formatter<remove_cvref_t<decltype(map(
- std::declval<const value_type&>()))>,
- Char>,
- detail::fallback_formatter<value_type, Char>>;
- formatter_type value_formatter_;
- public:
- template <typename ParseContext>
- FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
- return value_formatter_.parse(ctx);
- }
- template <typename FormatContext>
- auto format(const join_view<It, Sentinel, Char>& value,
- FormatContext& ctx) const -> decltype(ctx.out()) {
- auto it = value.begin;
- auto out = ctx.out();
- if (it != value.end) {
- out = value_formatter_.format(map(*it), ctx);
- ++it;
- while (it != value.end) {
- out = detail::copy_str<Char>(value.sep.begin(), value.sep.end(), out);
- ctx.advance_to(out);
- out = value_formatter_.format(map(*it), ctx);
- ++it;
- }
- }
- return out;
- }
- };
- /**
- Returns a view that formats the iterator range `[begin, end)` with elements
- separated by `sep`.
- */
- template <typename It, typename Sentinel>
- auto join(It begin, Sentinel end, string_view sep) -> join_view<It, Sentinel> {
- return {begin, end, sep};
- }
- /**
- \rst
- Returns a view that formats `range` with elements separated by `sep`.
- **Example**::
- std::vector<int> v = {1, 2, 3};
- fmt::print("{}", fmt::join(v, ", "));
- // Output: "1, 2, 3"
- ``fmt::join`` applies passed format specifiers to the range elements::
- fmt::print("{:02}", fmt::join(v, ", "));
- // Output: "01, 02, 03"
- \endrst
- */
- template <typename Range>
- auto join(Range&& range, string_view sep)
- -> join_view<detail::iterator_t<Range>, detail::sentinel_t<Range>> {
- return join(std::begin(range), std::end(range), sep);
- }
- /**
- \rst
- Converts *value* to ``std::string`` using the default format for type *T*.
- **Example**::
- #include <fmt/format.h>
- std::string answer = fmt::to_string(42);
- \endrst
- */
- template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)>
- inline auto to_string(const T& value) -> std::string {
- auto result = std::string();
- detail::write<char>(std::back_inserter(result), value);
- return result;
- }
- template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
- FMT_NODISCARD inline auto to_string(T value) -> std::string {
- // The buffer should be large enough to store the number including the sign
- // or "false" for bool.
- constexpr int max_size = detail::digits10<T>() + 2;
- char buffer[max_size > 5 ? static_cast<unsigned>(max_size) : 5];
- char* begin = buffer;
- return std::string(begin, detail::write<char>(begin, value));
- }
- template <typename Char, size_t SIZE>
- FMT_NODISCARD auto to_string(const basic_memory_buffer<Char, SIZE>& buf)
- -> std::basic_string<Char> {
- auto size = buf.size();
- detail::assume(size < std::basic_string<Char>().max_size());
- return std::basic_string<Char>(buf.data(), size);
- }
- FMT_BEGIN_DETAIL_NAMESPACE
- template <typename Char>
- void vformat_to(
- buffer<Char>& buf, basic_string_view<Char> fmt,
- basic_format_args<FMT_BUFFER_CONTEXT(type_identity_t<Char>)> args,
- locale_ref loc) {
- // workaround for msvc bug regarding name-lookup in module
- // link names into function scope
- using detail::arg_formatter;
- using detail::buffer_appender;
- using detail::custom_formatter;
- using detail::default_arg_formatter;
- using detail::get_arg;
- using detail::locale_ref;
- using detail::parse_format_specs;
- using detail::specs_checker;
- using detail::specs_handler;
- using detail::to_unsigned;
- using detail::type;
- using detail::write;
- auto out = buffer_appender<Char>(buf);
- if (fmt.size() == 2 && equal2(fmt.data(), "{}")) {
- auto arg = args.get(0);
- if (!arg) error_handler().on_error("argument not found");
- visit_format_arg(default_arg_formatter<Char>{out, args, loc}, arg);
- return;
- }
- struct format_handler : error_handler {
- basic_format_parse_context<Char> parse_context;
- buffer_context<Char> context;
- format_handler(buffer_appender<Char> p_out, basic_string_view<Char> str,
- basic_format_args<buffer_context<Char>> p_args,
- locale_ref p_loc)
- : parse_context(str), context(p_out, p_args, p_loc) {}
- void on_text(const Char* begin, const Char* end) {
- auto text = basic_string_view<Char>(begin, to_unsigned(end - begin));
- context.advance_to(write<Char>(context.out(), text));
- }
- FMT_CONSTEXPR auto on_arg_id() -> int {
- return parse_context.next_arg_id();
- }
- FMT_CONSTEXPR auto on_arg_id(int id) -> int {
- return parse_context.check_arg_id(id), id;
- }
- FMT_CONSTEXPR auto on_arg_id(basic_string_view<Char> id) -> int {
- int arg_id = context.arg_id(id);
- if (arg_id < 0) on_error("argument not found");
- return arg_id;
- }
- FMT_INLINE void on_replacement_field(int id, const Char*) {
- auto arg = get_arg(context, id);
- context.advance_to(visit_format_arg(
- default_arg_formatter<Char>{context.out(), context.args(),
- context.locale()},
- arg));
- }
- auto on_format_specs(int id, const Char* begin, const Char* end)
- -> const Char* {
- auto arg = get_arg(context, id);
- if (arg.type() == type::custom_type) {
- parse_context.advance_to(parse_context.begin() +
- (begin - &*parse_context.begin()));
- visit_format_arg(custom_formatter<Char>{parse_context, context}, arg);
- return parse_context.begin();
- }
- auto specs = basic_format_specs<Char>();
- specs_checker<specs_handler<Char>> handler(
- specs_handler<Char>(specs, parse_context, context), arg.type());
- begin = parse_format_specs(begin, end, handler);
- if (begin == end || *begin != '}')
- on_error("missing '}' in format string");
- auto f = arg_formatter<Char>{context.out(), specs, context.locale()};
- context.advance_to(visit_format_arg(f, arg));
- return begin;
- }
- };
- detail::parse_format_string<false>(fmt, format_handler(out, fmt, args, loc));
- }
- #ifndef FMT_HEADER_ONLY
- extern template FMT_API auto thousands_sep_impl<char>(locale_ref)
- -> thousands_sep_result<char>;
- extern template FMT_API auto thousands_sep_impl<wchar_t>(locale_ref)
- -> thousands_sep_result<wchar_t>;
- extern template FMT_API auto decimal_point_impl(locale_ref) -> char;
- extern template FMT_API auto decimal_point_impl(locale_ref) -> wchar_t;
- #endif // FMT_HEADER_ONLY
- FMT_END_DETAIL_NAMESPACE
- #if FMT_USE_USER_DEFINED_LITERALS
- inline namespace literals {
- /**
- \rst
- User-defined literal equivalent of :func:`fmt::arg`.
- **Example**::
- using namespace fmt::literals;
- fmt::print("Elapsed time: {s:.2f} seconds", "s"_a=1.23);
- \endrst
- */
- # if FMT_USE_NONTYPE_TEMPLATE_ARGS
- template <detail_exported::fixed_string Str> constexpr auto operator""_a() {
- using char_t = remove_cvref_t<decltype(Str.data[0])>;
- return detail::udl_arg<char_t, sizeof(Str.data) / sizeof(char_t), Str>();
- }
- # else
- constexpr auto operator"" _a(const char* s, size_t) -> detail::udl_arg<char> {
- return {s};
- }
- # endif
- } // namespace literals
- #endif // FMT_USE_USER_DEFINED_LITERALS
- template <typename Locale, FMT_ENABLE_IF(detail::is_locale<Locale>::value)>
- inline auto vformat(const Locale& loc, string_view fmt, format_args args)
- -> std::string {
- return detail::vformat(loc, fmt, args);
- }
- template <typename Locale, typename... T,
- FMT_ENABLE_IF(detail::is_locale<Locale>::value)>
- inline auto format(const Locale& loc, format_string<T...> fmt, T&&... args)
- -> std::string {
- return vformat(loc, string_view(fmt), fmt::make_format_args(args...));
- }
- template <typename OutputIt, typename Locale,
- FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value&&
- detail::is_locale<Locale>::value)>
- auto vformat_to(OutputIt out, const Locale& loc, string_view fmt,
- format_args args) -> OutputIt {
- using detail::get_buffer;
- auto&& buf = get_buffer<char>(out);
- detail::vformat_to(buf, fmt, args, detail::locale_ref(loc));
- return detail::get_iterator(buf);
- }
- template <typename OutputIt, typename Locale, typename... T,
- FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value&&
- detail::is_locale<Locale>::value)>
- FMT_INLINE auto format_to(OutputIt out, const Locale& loc,
- format_string<T...> fmt, T&&... args) -> OutputIt {
- return vformat_to(out, loc, fmt, fmt::make_format_args(args...));
- }
- FMT_MODULE_EXPORT_END
- FMT_END_NAMESPACE
- #ifdef FMT_HEADER_ONLY
- # define FMT_FUNC inline
- # include "format-inl.h"
- #else
- # define FMT_FUNC
- #endif
- #endif // FMT_FORMAT_H_
|