123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938 |
- // Copyright (C) 2004-2006 The Trustees of Indiana University.
- // Use, modification and distribution is subject to the Boost Software
- // License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
- // http://www.boost.org/LICENSE_1_0.txt)
- // Authors: Douglas Gregor
- // Andrew Lumsdaine
- /**
- * This header implements four distributed algorithms to compute
- * the minimum spanning tree (actually, minimum spanning forest) of a
- * graph. All of the algorithms were implemented as specified in the
- * paper by Dehne and Gotz:
- *
- * Frank Dehne and Silvia Gotz. Practical Parallel Algorithms for Minimum
- * Spanning Trees. In Symposium on Reliable Distributed Systems,
- * pages 366--371, 1998.
- *
- * There are four algorithm variants implemented.
- */
- #ifndef BOOST_DEHNE_GOTZ_MIN_SPANNING_TREE_HPP
- #define BOOST_DEHNE_GOTZ_MIN_SPANNING_TREE_HPP
- #ifndef BOOST_GRAPH_USE_MPI
- #error "Parallel BGL files should not be included unless <boost/graph/use_mpi.hpp> has been included"
- #endif
- #include <boost/graph/graph_traits.hpp>
- #include <boost/property_map/property_map.hpp>
- #include <boost/property_map/parallel/parallel_property_maps.hpp>
- #include <vector>
- #include <boost/graph/parallel/algorithm.hpp>
- #include <boost/limits.hpp>
- #include <utility>
- #include <boost/pending/disjoint_sets.hpp>
- #include <boost/pending/indirect_cmp.hpp>
- #include <boost/property_map/parallel/caching_property_map.hpp>
- #include <boost/graph/vertex_and_edge_range.hpp>
- #include <boost/graph/kruskal_min_spanning_tree.hpp>
- #include <boost/iterator/counting_iterator.hpp>
- #include <boost/iterator/transform_iterator.hpp>
- #include <boost/graph/parallel/container_traits.hpp>
- #include <boost/graph/parallel/detail/untracked_pair.hpp>
- #include <cmath>
- namespace boost { namespace graph { namespace distributed {
- namespace detail {
- /**
- * Binary function object type that selects the (edge, weight) pair
- * with the minimum weight. Used within a Boruvka merge step to select
- * the candidate edges incident to each supervertex.
- */
- struct smaller_weighted_edge
- {
- template<typename Edge, typename Weight>
- std::pair<Edge, Weight>
- operator()(const std::pair<Edge, Weight>& x,
- const std::pair<Edge, Weight>& y) const
- { return x.second < y.second? x : y; }
- };
- /**
- * Unary predicate that determines if the source and target vertices
- * of the given edge have the same representative within a disjoint
- * sets data structure. Used to indicate when an edge is now a
- * self-loop because of supervertex merging in Boruvka's algorithm.
- */
- template<typename DisjointSets, typename Graph>
- class do_has_same_supervertex
- {
- public:
- typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
- do_has_same_supervertex(DisjointSets& dset, const Graph& g)
- : dset(dset), g(g) { }
- bool operator()(edge_descriptor e)
- { return dset.find_set(source(e, g)) == dset.find_set(target(e, g)); }
- private:
- DisjointSets& dset;
- const Graph& g;
- };
- /**
- * Build a @ref do_has_same_supervertex object.
- */
- template<typename DisjointSets, typename Graph>
- inline do_has_same_supervertex<DisjointSets, Graph>
- has_same_supervertex(DisjointSets& dset, const Graph& g)
- { return do_has_same_supervertex<DisjointSets, Graph>(dset, g); }
- /** \brief A single distributed Boruvka merge step.
- *
- * A distributed Boruvka merge step involves computing (globally)
- * the minimum weight edges incident on each supervertex and then
- * merging supervertices along these edges. Once supervertices are
- * merged, self-loops are eliminated.
- *
- * The set of parameters passed to this algorithm is large, and
- * considering this algorithm in isolation there are several
- * redundancies. However, the more asymptotically efficient
- * distributed MSF algorithms require mixing Boruvka steps with the
- * merging of local MSFs (implemented in
- * merge_local_minimum_spanning_trees_step): the interaction of the
- * two algorithms mandates the addition of these parameters.
- *
- * \param pg The process group over which communication should be
- * performed. Within the distributed Boruvka algorithm, this will be
- * equivalent to \code process_group(g); however, in the context of
- * the mixed MSF algorithms, the process group @p pg will be a
- * (non-strict) process subgroup of \code process_group(g).
- *
- * \param g The underlying graph on which the MSF is being
- * computed. The type of @p g must model DistributedGraph, but there
- * are no other requirements because the edge and (super)vertex
- * lists are passed separately.
- *
- * \param weight_map Property map containing the weights of each
- * edge. The type of this property map must model
- * ReadablePropertyMap and must support caching.
- *
- * \param out An output iterator that will be written with the set
- * of edges selected to build the MSF. Every process within the
- * process group @p pg will receive all edges in the MSF.
- *
- * \param dset Disjoint sets data structure mapping from vertices in
- * the graph @p g to their representative supervertex.
- *
- * \param supervertex_map Mapping from supervertex descriptors to
- * indices.
- *
- * \param supervertices A vector containing all of the
- * supervertices. Will be modified to include only the remaining
- * supervertices after merging occurs.
- *
- * \param edge_list The list of edges that remain in the graph. This
- * list will be pruned to remove self-loops once MSF edges have been
- * found.
- */
- template<typename ProcessGroup, typename Graph, typename WeightMap,
- typename OutputIterator, typename RankMap, typename ParentMap,
- typename SupervertexMap, typename Vertex, typename EdgeList>
- OutputIterator
- boruvka_merge_step(ProcessGroup pg, const Graph& g, WeightMap weight_map,
- OutputIterator out,
- disjoint_sets<RankMap, ParentMap>& dset,
- SupervertexMap supervertex_map,
- std::vector<Vertex>& supervertices,
- EdgeList& edge_list)
- {
- typedef typename graph_traits<Graph>::vertex_descriptor
- vertex_descriptor;
- typedef typename graph_traits<Graph>::vertices_size_type
- vertices_size_type;
- typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
- typedef typename EdgeList::iterator edge_iterator;
- typedef typename property_traits<WeightMap>::value_type
- weight_type;
- typedef boost::parallel::detail::untracked_pair<edge_descriptor,
- weight_type> w_edge;
- typedef typename property_traits<SupervertexMap>::value_type
- supervertex_index;
- smaller_weighted_edge min_edge;
- weight_type inf = (std::numeric_limits<weight_type>::max)();
- // Renumber the supervertices
- for (std::size_t i = 0; i < supervertices.size(); ++i)
- put(supervertex_map, supervertices[i], i);
- // BSP-B1: Find local minimum-weight edges for each supervertex
- std::vector<w_edge> candidate_edges(supervertices.size(),
- w_edge(edge_descriptor(), inf));
- for (edge_iterator ei = edge_list.begin(); ei != edge_list.end(); ++ei) {
- weight_type w = get(weight_map, *ei);
- supervertex_index u =
- get(supervertex_map, dset.find_set(source(*ei, g)));
- supervertex_index v =
- get(supervertex_map, dset.find_set(target(*ei, g)));
- if (u != v) {
- candidate_edges[u] = min_edge(candidate_edges[u], w_edge(*ei, w));
- candidate_edges[v] = min_edge(candidate_edges[v], w_edge(*ei, w));
- }
- }
- // BSP-B2 (a): Compute global minimum edges for each supervertex
- all_reduce(pg,
- &candidate_edges[0],
- &candidate_edges[0] + candidate_edges.size(),
- &candidate_edges[0], min_edge);
- // BSP-B2 (b): Use the edges to compute sequentially the new
- // connected components and emit the edges.
- for (vertices_size_type i = 0; i < candidate_edges.size(); ++i) {
- if (candidate_edges[i].second != inf) {
- edge_descriptor e = candidate_edges[i].first;
- vertex_descriptor u = dset.find_set(source(e, g));
- vertex_descriptor v = dset.find_set(target(e, g));
- if (u != v) {
- // Emit the edge, but cache the weight so everyone knows it
- cache(weight_map, e, candidate_edges[i].second);
- *out++ = e;
- // Link the two supervertices
- dset.link(u, v);
- // Whichever vertex was reparented will be removed from the
- // list of supervertices.
- vertex_descriptor victim = u;
- if (dset.find_set(u) == u) victim = v;
- supervertices[get(supervertex_map, victim)] =
- graph_traits<Graph>::null_vertex();
- }
- }
- }
- // BSP-B3: Eliminate self-loops
- edge_list.erase(std::remove_if(edge_list.begin(), edge_list.end(),
- has_same_supervertex(dset, g)),
- edge_list.end());
- // TBD: might also eliminate multiple edges between supervertices
- // when the edges do not have the best weight, but this is not
- // strictly necessary.
- // Eliminate supervertices that have been absorbed
- supervertices.erase(std::remove(supervertices.begin(),
- supervertices.end(),
- graph_traits<Graph>::null_vertex()),
- supervertices.end());
- return out;
- }
- /**
- * An edge descriptor adaptor that reroutes the source and target
- * edges to different vertices, but retains the original edge
- * descriptor for, e.g., property maps. This is used when we want to
- * turn a set of edges in the overall graph into a set of edges
- * between supervertices.
- */
- template<typename Graph>
- struct supervertex_edge_descriptor
- {
- typedef supervertex_edge_descriptor self_type;
- typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
- typedef typename graph_traits<Graph>::edge_descriptor Edge;
- Vertex source;
- Vertex target;
- Edge e;
- operator Edge() const { return e; }
- friend inline bool operator==(const self_type& x, const self_type& y)
- { return x.e == y.e; }
- friend inline bool operator!=(const self_type& x, const self_type& y)
- { return x.e != y.e; }
- };
- template<typename Graph>
- inline typename supervertex_edge_descriptor<Graph>::Vertex
- source(supervertex_edge_descriptor<Graph> se, const Graph&)
- { return se.source; }
- template<typename Graph>
- inline typename supervertex_edge_descriptor<Graph>::Vertex
- target(supervertex_edge_descriptor<Graph> se, const Graph&)
- { return se.target; }
- /**
- * Build a supervertex edge descriptor from a normal edge descriptor
- * using the given disjoint sets data structure to identify
- * supervertex representatives.
- */
- template<typename Graph, typename DisjointSets>
- struct build_supervertex_edge_descriptor
- {
- typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
- typedef typename graph_traits<Graph>::edge_descriptor Edge;
- typedef Edge argument_type;
- typedef supervertex_edge_descriptor<Graph> result_type;
- build_supervertex_edge_descriptor() : g(0), dsets(0) { }
- build_supervertex_edge_descriptor(const Graph& g, DisjointSets& dsets)
- : g(&g), dsets(&dsets) { }
- result_type operator()(argument_type e) const
- {
- result_type result;
- result.source = dsets->find_set(source(e, *g));
- result.target = dsets->find_set(target(e, *g));
- result.e = e;
- return result;
- }
- private:
- const Graph* g;
- DisjointSets* dsets;
- };
- template<typename Graph, typename DisjointSets>
- inline build_supervertex_edge_descriptor<Graph, DisjointSets>
- make_supervertex_edge_descriptor(const Graph& g, DisjointSets& dsets)
- { return build_supervertex_edge_descriptor<Graph, DisjointSets>(g, dsets); }
- template<typename T>
- struct identity_function
- {
- typedef T argument_type;
- typedef T result_type;
- result_type operator()(argument_type x) const { return x; }
- };
- template<typename Graph, typename DisjointSets, typename EdgeMapper>
- class is_not_msf_edge
- {
- typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
- typedef typename graph_traits<Graph>::edge_descriptor Edge;
- public:
- is_not_msf_edge(const Graph& g, DisjointSets dset, EdgeMapper edge_mapper)
- : g(g), dset(dset), edge_mapper(edge_mapper) { }
- bool operator()(Edge e)
- {
- Vertex u = dset.find_set(source(edge_mapper(e), g));
- Vertex v = dset.find_set(target(edge_mapper(e), g));
- if (u == v) return true;
- else {
- dset.link(u, v);
- return false;
- }
- }
- private:
- const Graph& g;
- DisjointSets dset;
- EdgeMapper edge_mapper;
- };
- template<typename Graph, typename ForwardIterator, typename EdgeList,
- typename EdgeMapper, typename RankMap, typename ParentMap>
- void
- sorted_mutating_kruskal(const Graph& g,
- ForwardIterator first_vertex,
- ForwardIterator last_vertex,
- EdgeList& edge_list, EdgeMapper edge_mapper,
- RankMap rank_map, ParentMap parent_map)
- {
- typedef disjoint_sets<RankMap, ParentMap> DisjointSets;
- // Build and initialize disjoint-sets data structure
- DisjointSets dset(rank_map, parent_map);
- for (ForwardIterator v = first_vertex; v != last_vertex; ++v)
- dset.make_set(*v);
- is_not_msf_edge<Graph, DisjointSets, EdgeMapper>
- remove_non_msf_edges(g, dset, edge_mapper);
- edge_list.erase(std::remove_if(edge_list.begin(), edge_list.end(),
- remove_non_msf_edges),
- edge_list.end());
- }
- /**
- * Merge local minimum spanning forests from p processes into
- * minimum spanning forests on p/D processes (where D is the tree
- * factor, currently fixed at 3), eliminating unnecessary edges in
- * the process.
- *
- * As with @ref boruvka_merge_step, this routine has many
- * parameters, not all of which make sense within the limited
- * context of this routine. The parameters are required for the
- * Boruvka and local MSF merging steps to interoperate.
- *
- * \param pg The process group on which local minimum spanning
- * forests should be merged. The top (D-1)p/D processes will be
- * eliminated, and a new process subgroup containing p/D processors
- * will be returned. The value D is a constant factor that is
- * currently fixed to 3.
- *
- * \param g The underlying graph whose MSF is being computed. It must model
- * the DistributedGraph concept.
- *
- * \param first_vertex Iterator to the first vertex in the graph
- * that should be considered. While the local MSF merging algorithm
- * typically operates on the entire vertex set, within the hybrid
- * distributed MSF algorithms this will refer to the first
- * supervertex.
- *
- * \param last_vertex The past-the-end iterator for the vertex list.
- *
- * \param edge_list The list of local edges that will be
- * considered. For the p/D processes that remain, this list will
- * contain edges in the MSF known to the vertex after other
- * processes' edge lists have been merged. The edge list must be
- * sorted in order of increasing weight.
- *
- * \param weight Property map containing the weights of each
- * edge. The type of this property map must model
- * ReadablePropertyMap and must support caching.
- *
- * \param global_index Mapping from vertex descriptors to a global
- * index. The type must model ReadablePropertyMap.
- *
- * \param edge_mapper A function object that can remap edge descriptors
- * in the edge list to any alternative edge descriptor. This
- * function object will be the identity function when a pure merging
- * of local MSFs is required, but may be a mapping to a supervertex
- * edge when the local MSF merging occurs on a supervertex
- * graph. This function object saves us the trouble of having to
- * build a supervertex graph adaptor.
- *
- * \param already_local_msf True when the edge list already
- * constitutes a local MSF. If false, Kruskal's algorithm will first
- * be applied to the local edge list to select MSF edges.
- *
- * \returns The process subgroup containing the remaining p/D
- * processes. If the size of this process group is greater than one,
- * the MSF edges contained in the edge list do not constitute an MSF
- * for the entire graph.
- */
- template<typename ProcessGroup, typename Graph, typename ForwardIterator,
- typename EdgeList, typename WeightMap, typename GlobalIndexMap,
- typename EdgeMapper>
- ProcessGroup
- merge_local_minimum_spanning_trees_step(ProcessGroup pg,
- const Graph& g,
- ForwardIterator first_vertex,
- ForwardIterator last_vertex,
- EdgeList& edge_list,
- WeightMap weight,
- GlobalIndexMap global_index,
- EdgeMapper edge_mapper,
- bool already_local_msf)
- {
- typedef typename ProcessGroup::process_id_type process_id_type;
- typedef typename EdgeList::value_type edge_descriptor;
- typedef typename property_traits<WeightMap>::value_type weight_type;
- typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
- // The tree factor, often called "D"
- process_id_type const tree_factor = 3;
- process_id_type num_procs = num_processes(pg);
- process_id_type id = process_id(pg);
- process_id_type procs_left = (num_procs + tree_factor - 1) / tree_factor;
- std::size_t n = std::size_t(last_vertex - first_vertex);
- if (!already_local_msf) {
- // Compute local minimum spanning forest. We only care about the
- // edges in the MSF, because only edges in the local MSF can be in
- // the global MSF.
- std::vector<std::size_t> ranks(n);
- std::vector<vertex_descriptor> parents(n);
- detail::sorted_mutating_kruskal
- (g, first_vertex, last_vertex,
- edge_list, edge_mapper,
- make_iterator_property_map(ranks.begin(), global_index),
- make_iterator_property_map(parents.begin(), global_index));
- }
- typedef std::pair<edge_descriptor, weight_type> w_edge;
- // Order edges based on their weights.
- indirect_cmp<WeightMap, std::less<weight_type> > cmp_edge_weight(weight);
- if (id < procs_left) {
- // The p/D processes that remain will receive local MSF edges from
- // D-1 other processes.
- synchronize(pg);
- for (process_id_type from_id = procs_left + id; from_id < num_procs;
- from_id += procs_left) {
- std::size_t num_incoming_edges;
- receive(pg, from_id, 0, num_incoming_edges);
- if (num_incoming_edges > 0) {
- std::vector<w_edge> incoming_edges(num_incoming_edges);
- receive(pg, from_id, 1, &incoming_edges[0], num_incoming_edges);
- edge_list.reserve(edge_list.size() + num_incoming_edges);
- for (std::size_t i = 0; i < num_incoming_edges; ++i) {
- cache(weight, incoming_edges[i].first, incoming_edges[i].second);
- edge_list.push_back(incoming_edges[i].first);
- }
- std::inplace_merge(edge_list.begin(),
- edge_list.end() - num_incoming_edges,
- edge_list.end(),
- cmp_edge_weight);
- }
- }
- // Compute the local MSF from union of the edges in the MSFs of
- // all children.
- std::vector<std::size_t> ranks(n);
- std::vector<vertex_descriptor> parents(n);
- detail::sorted_mutating_kruskal
- (g, first_vertex, last_vertex,
- edge_list, edge_mapper,
- make_iterator_property_map(ranks.begin(), global_index),
- make_iterator_property_map(parents.begin(), global_index));
- } else {
- // The (D-1)p/D processes that are dropping out of further
- // computations merely send their MSF edges to their parent
- // process in the process tree.
- send(pg, id % procs_left, 0, edge_list.size());
- if (edge_list.size() > 0) {
- std::vector<w_edge> outgoing_edges;
- outgoing_edges.reserve(edge_list.size());
- for (std::size_t i = 0; i < edge_list.size(); ++i) {
- outgoing_edges.push_back(std::make_pair(edge_list[i],
- get(weight, edge_list[i])));
- }
- send(pg, id % procs_left, 1, &outgoing_edges[0],
- outgoing_edges.size());
- }
- synchronize(pg);
- }
- // Return a process subgroup containing the p/D parent processes
- return process_subgroup(pg,
- make_counting_iterator(process_id_type(0)),
- make_counting_iterator(procs_left));
- }
- } // end namespace detail
- // ---------------------------------------------------------------------
- // Dense Boruvka MSF algorithm
- // ---------------------------------------------------------------------
- template<typename Graph, typename WeightMap, typename OutputIterator,
- typename VertexIndexMap, typename RankMap, typename ParentMap,
- typename SupervertexMap>
- OutputIterator
- dense_boruvka_minimum_spanning_tree(const Graph& g, WeightMap weight_map,
- OutputIterator out,
- VertexIndexMap index_map,
- RankMap rank_map, ParentMap parent_map,
- SupervertexMap supervertex_map)
- {
- using boost::graph::parallel::process_group;
- typedef typename graph_traits<Graph>::traversal_category traversal_category;
- BOOST_STATIC_ASSERT((is_convertible<traversal_category*,
- vertex_list_graph_tag*>::value));
- typedef typename graph_traits<Graph>::vertices_size_type vertices_size_type;
- typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
- typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
- typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
- // Don't throw away cached edge weights
- weight_map.set_max_ghost_cells(0);
- // Initialize the disjoint sets structures
- disjoint_sets<RankMap, ParentMap> dset(rank_map, parent_map);
- vertex_iterator vi, vi_end;
- for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
- dset.make_set(*vi);
- std::vector<vertex_descriptor> supervertices;
- supervertices.assign(vertices(g).first, vertices(g).second);
- // Use Kruskal's algorithm to find the minimum spanning forest
- // considering only the local edges. The resulting edges are not
- // necessarily going to be in the final minimum spanning
- // forest. However, any edge not part of the local MSF cannot be a
- // part of the global MSF, so we should have eliminated some edges
- // from consideration.
- std::vector<edge_descriptor> edge_list;
- kruskal_minimum_spanning_tree
- (make_vertex_and_edge_range(g, vertices(g).first, vertices(g).second,
- edges(g).first, edges(g).second),
- std::back_inserter(edge_list),
- boost::weight_map(weight_map).
- vertex_index_map(index_map));
- // While the number of supervertices is decreasing, keep executing
- // Boruvka steps to identify additional MSF edges. This loop will
- // execute log |V| times.
- vertices_size_type old_num_supervertices;
- do {
- old_num_supervertices = supervertices.size();
- out = detail::boruvka_merge_step(process_group(g), g,
- weight_map, out,
- dset, supervertex_map, supervertices,
- edge_list);
- } while (supervertices.size() < old_num_supervertices);
- return out;
- }
- template<typename Graph, typename WeightMap, typename OutputIterator,
- typename VertexIndex>
- OutputIterator
- dense_boruvka_minimum_spanning_tree(const Graph& g, WeightMap weight_map,
- OutputIterator out, VertexIndex i_map)
- {
- typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
- std::vector<std::size_t> ranks(num_vertices(g));
- std::vector<vertex_descriptor> parents(num_vertices(g));
- std::vector<std::size_t> supervertices(num_vertices(g));
- return dense_boruvka_minimum_spanning_tree
- (g, weight_map, out, i_map,
- make_iterator_property_map(ranks.begin(), i_map),
- make_iterator_property_map(parents.begin(), i_map),
- make_iterator_property_map(supervertices.begin(), i_map));
- }
- template<typename Graph, typename WeightMap, typename OutputIterator>
- OutputIterator
- dense_boruvka_minimum_spanning_tree(const Graph& g, WeightMap weight_map,
- OutputIterator out)
- {
- return dense_boruvka_minimum_spanning_tree(g, weight_map, out,
- get(vertex_index, g));
- }
- // ---------------------------------------------------------------------
- // Merge local MSFs MSF algorithm
- // ---------------------------------------------------------------------
- template<typename Graph, typename WeightMap, typename OutputIterator,
- typename GlobalIndexMap>
- OutputIterator
- merge_local_minimum_spanning_trees(const Graph& g, WeightMap weight,
- OutputIterator out,
- GlobalIndexMap global_index)
- {
- using boost::graph::parallel::process_group_type;
- using boost::graph::parallel::process_group;
- typedef typename graph_traits<Graph>::traversal_category traversal_category;
- BOOST_STATIC_ASSERT((is_convertible<traversal_category*,
- vertex_list_graph_tag*>::value));
- typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
- // Don't throw away cached edge weights
- weight.set_max_ghost_cells(0);
- // Compute the initial local minimum spanning forests
- std::vector<edge_descriptor> edge_list;
- kruskal_minimum_spanning_tree
- (make_vertex_and_edge_range(g, vertices(g).first, vertices(g).second,
- edges(g).first, edges(g).second),
- std::back_inserter(edge_list),
- boost::weight_map(weight).vertex_index_map(global_index));
- // Merge the local MSFs from p processes into p/D processes,
- // reducing the number of processes in each step. Continue looping
- // until either (a) the current process drops out or (b) only one
- // process remains in the group. This loop will execute log_D p
- // times.
- typename process_group_type<Graph>::type pg = process_group(g);
- while (pg && num_processes(pg) > 1) {
- pg = detail::merge_local_minimum_spanning_trees_step
- (pg, g, vertices(g).first, vertices(g).second,
- edge_list, weight, global_index,
- detail::identity_function<edge_descriptor>(), true);
- }
- // Only process 0 has the entire edge list, so emit it to the output
- // iterator.
- if (pg && process_id(pg) == 0) {
- out = std::copy(edge_list.begin(), edge_list.end(), out);
- }
- synchronize(process_group(g));
- return out;
- }
- template<typename Graph, typename WeightMap, typename OutputIterator>
- inline OutputIterator
- merge_local_minimum_spanning_trees(const Graph& g, WeightMap weight,
- OutputIterator out)
- {
- return merge_local_minimum_spanning_trees(g, weight, out,
- get(vertex_index, g));
- }
- // ---------------------------------------------------------------------
- // Boruvka-then-merge MSF algorithm
- // ---------------------------------------------------------------------
- template<typename Graph, typename WeightMap, typename OutputIterator,
- typename GlobalIndexMap, typename RankMap, typename ParentMap,
- typename SupervertexMap>
- OutputIterator
- boruvka_then_merge(const Graph& g, WeightMap weight, OutputIterator out,
- GlobalIndexMap index, RankMap rank_map,
- ParentMap parent_map, SupervertexMap supervertex_map)
- {
- using std::log;
- using boost::graph::parallel::process_group_type;
- using boost::graph::parallel::process_group;
- typedef typename graph_traits<Graph>::traversal_category traversal_category;
- BOOST_STATIC_ASSERT((is_convertible<traversal_category*,
- vertex_list_graph_tag*>::value));
- typedef typename graph_traits<Graph>::vertices_size_type vertices_size_type;
- typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
- typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
- typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
- // Don't throw away cached edge weights
- weight.set_max_ghost_cells(0);
- // Compute the initial local minimum spanning forests
- std::vector<edge_descriptor> edge_list;
- kruskal_minimum_spanning_tree
- (make_vertex_and_edge_range(g, vertices(g).first, vertices(g).second,
- edges(g).first, edges(g).second),
- std::back_inserter(edge_list),
- boost::weight_map(weight).
- vertex_index_map(index));
- // Initialize the disjoint sets structures for Boruvka steps
- disjoint_sets<RankMap, ParentMap> dset(rank_map, parent_map);
- vertex_iterator vi, vi_end;
- for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
- dset.make_set(*vi);
- // Construct the initial set of supervertices (all vertices)
- std::vector<vertex_descriptor> supervertices;
- supervertices.assign(vertices(g).first, vertices(g).second);
- // Continue performing Boruvka merge steps until the number of
- // supervertices reaches |V| / (log_D p)^2.
- const std::size_t tree_factor = 3; // TBD: same as above! should be param
- double log_d_p = log((double)num_processes(process_group(g)))
- / log((double)tree_factor);
- vertices_size_type target_supervertices =
- vertices_size_type(num_vertices(g) / (log_d_p * log_d_p));
- vertices_size_type old_num_supervertices;
- while (supervertices.size() > target_supervertices) {
- old_num_supervertices = supervertices.size();
- out = detail::boruvka_merge_step(process_group(g), g,
- weight, out, dset,
- supervertex_map, supervertices,
- edge_list);
- if (supervertices.size() == old_num_supervertices)
- return out;
- }
- // Renumber the supervertices
- for (std::size_t i = 0; i < supervertices.size(); ++i)
- put(supervertex_map, supervertices[i], i);
- // Merge local MSFs on the supervertices. (D-1)p/D processors drop
- // out each iteration, so this loop executes log_D p times.
- typename process_group_type<Graph>::type pg = process_group(g);
- bool have_msf = false;
- while (pg && num_processes(pg) > 1) {
- pg = detail::merge_local_minimum_spanning_trees_step
- (pg, g, supervertices.begin(), supervertices.end(),
- edge_list, weight, supervertex_map,
- detail::make_supervertex_edge_descriptor(g, dset),
- have_msf);
- have_msf = true;
- }
- // Only process 0 has the complete list of _supervertex_ MST edges,
- // so emit those to the output iterator. This is not the complete
- // list of edges in the MSF, however: the Boruvka steps in the
- // beginning of the algorithm emitted any edges used to merge
- // supervertices.
- if (pg && process_id(pg) == 0)
- out = std::copy(edge_list.begin(), edge_list.end(), out);
- synchronize(process_group(g));
- return out;
- }
- template<typename Graph, typename WeightMap, typename OutputIterator,
- typename GlobalIndexMap>
- inline OutputIterator
- boruvka_then_merge(const Graph& g, WeightMap weight, OutputIterator out,
- GlobalIndexMap index)
- {
- typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
- typedef typename graph_traits<Graph>::vertices_size_type vertices_size_type;
- std::vector<vertices_size_type> ranks(num_vertices(g));
- std::vector<vertex_descriptor> parents(num_vertices(g));
- std::vector<vertices_size_type> supervertex_indices(num_vertices(g));
- return boruvka_then_merge
- (g, weight, out, index,
- make_iterator_property_map(ranks.begin(), index),
- make_iterator_property_map(parents.begin(), index),
- make_iterator_property_map(supervertex_indices.begin(), index));
- }
- template<typename Graph, typename WeightMap, typename OutputIterator>
- inline OutputIterator
- boruvka_then_merge(const Graph& g, WeightMap weight, OutputIterator out)
- { return boruvka_then_merge(g, weight, out, get(vertex_index, g)); }
- // ---------------------------------------------------------------------
- // Boruvka-mixed-merge MSF algorithm
- // ---------------------------------------------------------------------
- template<typename Graph, typename WeightMap, typename OutputIterator,
- typename GlobalIndexMap, typename RankMap, typename ParentMap,
- typename SupervertexMap>
- OutputIterator
- boruvka_mixed_merge(const Graph& g, WeightMap weight, OutputIterator out,
- GlobalIndexMap index, RankMap rank_map,
- ParentMap parent_map, SupervertexMap supervertex_map)
- {
- using boost::graph::parallel::process_group_type;
- using boost::graph::parallel::process_group;
- typedef typename graph_traits<Graph>::traversal_category traversal_category;
- BOOST_STATIC_ASSERT((is_convertible<traversal_category*,
- vertex_list_graph_tag*>::value));
- typedef typename graph_traits<Graph>::vertices_size_type vertices_size_type;
- typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
- typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
- typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
- // Don't throw away cached edge weights
- weight.set_max_ghost_cells(0);
- // Initialize the disjoint sets structures for Boruvka steps
- disjoint_sets<RankMap, ParentMap> dset(rank_map, parent_map);
- vertex_iterator vi, vi_end;
- for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
- dset.make_set(*vi);
- // Construct the initial set of supervertices (all vertices)
- std::vector<vertex_descriptor> supervertices;
- supervertices.assign(vertices(g).first, vertices(g).second);
- // Compute the initial local minimum spanning forests
- std::vector<edge_descriptor> edge_list;
- kruskal_minimum_spanning_tree
- (make_vertex_and_edge_range(g, vertices(g).first, vertices(g).second,
- edges(g).first, edges(g).second),
- std::back_inserter(edge_list),
- boost::weight_map(weight).
- vertex_index_map(index));
- if (num_processes(process_group(g)) == 1) {
- return std::copy(edge_list.begin(), edge_list.end(), out);
- }
- // Like the merging local MSFs algorithm and the Boruvka-then-merge
- // algorithm, each iteration of this loop reduces the number of
- // processes by a constant factor D, and therefore we require log_D
- // p iterations. Note also that the number of edges in the edge list
- // decreases geometrically, giving us an efficient distributed MSF
- // algorithm.
- typename process_group_type<Graph>::type pg = process_group(g);
- vertices_size_type old_num_supervertices;
- while (pg && num_processes(pg) > 1) {
- // A single Boruvka step. If this doesn't change anything, we're done
- old_num_supervertices = supervertices.size();
- out = detail::boruvka_merge_step(pg, g, weight, out, dset,
- supervertex_map, supervertices,
- edge_list);
- if (old_num_supervertices == supervertices.size()) {
- edge_list.clear();
- break;
- }
- // Renumber the supervertices
- for (std::size_t i = 0; i < supervertices.size(); ++i)
- put(supervertex_map, supervertices[i], i);
- // A single merging of local MSTs, which reduces the number of
- // processes we're using by a constant factor D.
- pg = detail::merge_local_minimum_spanning_trees_step
- (pg, g, supervertices.begin(), supervertices.end(),
- edge_list, weight, supervertex_map,
- detail::make_supervertex_edge_descriptor(g, dset),
- true);
- }
- // Only process 0 has the complete edge list, so emit it for the
- // user. Note that list edge list only contains the MSF edges in the
- // final supervertex graph: all of the other edges were used to
- // merge supervertices and have been emitted by the Boruvka steps,
- // although only process 0 has received the complete set.
- if (pg && process_id(pg) == 0)
- out = std::copy(edge_list.begin(), edge_list.end(), out);
- synchronize(process_group(g));
- return out;
- }
- template<typename Graph, typename WeightMap, typename OutputIterator,
- typename GlobalIndexMap>
- inline OutputIterator
- boruvka_mixed_merge(const Graph& g, WeightMap weight, OutputIterator out,
- GlobalIndexMap index)
- {
- typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
- typedef typename graph_traits<Graph>::vertices_size_type vertices_size_type;
- std::vector<vertices_size_type> ranks(num_vertices(g));
- std::vector<vertex_descriptor> parents(num_vertices(g));
- std::vector<vertices_size_type> supervertex_indices(num_vertices(g));
- return boruvka_mixed_merge
- (g, weight, out, index,
- make_iterator_property_map(ranks.begin(), index),
- make_iterator_property_map(parents.begin(), index),
- make_iterator_property_map(supervertex_indices.begin(), index));
- }
- template<typename Graph, typename WeightMap, typename OutputIterator>
- inline OutputIterator
- boruvka_mixed_merge(const Graph& g, WeightMap weight, OutputIterator out)
- { return boruvka_mixed_merge(g, weight, out, get(vertex_index, g)); }
- } // end namespace distributed
- using distributed::dense_boruvka_minimum_spanning_tree;
- using distributed::merge_local_minimum_spanning_trees;
- using distributed::boruvka_then_merge;
- using distributed::boruvka_mixed_merge;
- } } // end namespace boost::graph
- #endif // BOOST_DEHNE_GOTZ_MIN_SPANNING_TREE_HPP
|