12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184 |
- // (C) Copyright Nick Thompson 2018.
- // (C) Copyright Matt Borland 2020.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_STATISTICS_UNIVARIATE_STATISTICS_HPP
- #define BOOST_MATH_STATISTICS_UNIVARIATE_STATISTICS_HPP
- #include <boost/math/statistics/detail/single_pass.hpp>
- #include <boost/math/tools/config.hpp>
- #include <boost/math/tools/assert.hpp>
- #include <algorithm>
- #include <iterator>
- #include <tuple>
- #include <cmath>
- #include <vector>
- #include <type_traits>
- #include <utility>
- #include <numeric>
- #include <list>
- #ifdef BOOST_MATH_EXEC_COMPATIBLE
- #include <execution>
- namespace boost::math::statistics {
- template<class ExecutionPolicy, class ForwardIterator>
- inline auto mean(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last)
- {
- using Real = typename std::iterator_traits<ForwardIterator>::value_type;
- BOOST_MATH_ASSERT_MSG(first != last, "At least one sample is required to compute the mean.");
- if constexpr (std::is_integral_v<Real>)
- {
- if constexpr (std::is_same_v<std::remove_reference_t<decltype(exec)>, decltype(std::execution::seq)>)
- {
- return detail::mean_sequential_impl<double>(first, last);
- }
- else
- {
- return std::reduce(exec, first, last, 0.0) / std::distance(first, last);
- }
- }
- else
- {
- if constexpr (std::is_same_v<std::remove_reference_t<decltype(exec)>, decltype(std::execution::seq)>)
- {
- return detail::mean_sequential_impl<Real>(first, last);
- }
- else
- {
- return std::reduce(exec, first, last, Real(0.0)) / Real(std::distance(first, last));
- }
- }
- }
- template<class ExecutionPolicy, class Container>
- inline auto mean(ExecutionPolicy&& exec, Container const & v)
- {
- return mean(exec, std::cbegin(v), std::cend(v));
- }
- template<class ForwardIterator>
- inline auto mean(ForwardIterator first, ForwardIterator last)
- {
- return mean(std::execution::seq, first, last);
- }
- template<class Container>
- inline auto mean(Container const & v)
- {
- return mean(std::execution::seq, std::cbegin(v), std::cend(v));
- }
- template<class ExecutionPolicy, class ForwardIterator>
- inline auto variance(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last)
- {
- using Real = typename std::iterator_traits<ForwardIterator>::value_type;
- if constexpr (std::is_integral_v<Real>)
- {
- if constexpr (std::is_same_v<std::remove_reference_t<decltype(exec)>, decltype(std::execution::seq)>)
- {
- return std::get<2>(detail::variance_sequential_impl<std::tuple<double, double, double, double>>(first, last));
- }
- else
- {
- const auto results = detail::first_four_moments_parallel_impl<std::tuple<double, double, double, double, double>>(first, last);
- return std::get<1>(results) / std::get<4>(results);
- }
- }
- else
- {
- if constexpr (std::is_same_v<std::remove_reference_t<decltype(exec)>, decltype(std::execution::seq)>)
- {
- return std::get<2>(detail::variance_sequential_impl<std::tuple<Real, Real, Real, Real>>(first, last));
- }
- else
- {
- const auto results = detail::first_four_moments_parallel_impl<std::tuple<Real, Real, Real, Real, Real>>(first, last);
- return std::get<1>(results) / std::get<4>(results);
- }
- }
- }
- template<class ExecutionPolicy, class Container>
- inline auto variance(ExecutionPolicy&& exec, Container const & v)
- {
- return variance(exec, std::cbegin(v), std::cend(v));
- }
- template<class ForwardIterator>
- inline auto variance(ForwardIterator first, ForwardIterator last)
- {
- return variance(std::execution::seq, first, last);
- }
- template<class Container>
- inline auto variance(Container const & v)
- {
- return variance(std::execution::seq, std::cbegin(v), std::cend(v));
- }
- template<class ExecutionPolicy, class ForwardIterator>
- inline auto sample_variance(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last)
- {
- const auto n = std::distance(first, last);
- BOOST_MATH_ASSERT_MSG(n > 1, "At least two samples are required to compute the sample variance.");
- return n*variance(exec, first, last)/(n-1);
- }
- template<class ExecutionPolicy, class Container>
- inline auto sample_variance(ExecutionPolicy&& exec, Container const & v)
- {
- return sample_variance(exec, std::cbegin(v), std::cend(v));
- }
- template<class ForwardIterator>
- inline auto sample_variance(ForwardIterator first, ForwardIterator last)
- {
- return sample_variance(std::execution::seq, first, last);
- }
- template<class Container>
- inline auto sample_variance(Container const & v)
- {
- return sample_variance(std::execution::seq, std::cbegin(v), std::cend(v));
- }
- template<class ExecutionPolicy, class ForwardIterator>
- inline auto mean_and_sample_variance(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last)
- {
- using Real = typename std::iterator_traits<ForwardIterator>::value_type;
- if constexpr (std::is_integral_v<Real>)
- {
- if constexpr (std::is_same_v<std::remove_reference_t<decltype(exec)>, decltype(std::execution::seq)>)
- {
- const auto results = detail::variance_sequential_impl<std::tuple<double, double, double, double>>(first, last);
- return std::make_pair(std::get<0>(results), std::get<2>(results)*std::get<3>(results)/(std::get<3>(results)-1.0));
- }
- else
- {
- const auto results = detail::first_four_moments_parallel_impl<std::tuple<double, double, double, double, double>>(first, last);
- return std::make_pair(std::get<0>(results), std::get<1>(results) / (std::get<4>(results)-1.0));
- }
- }
- else
- {
- if constexpr (std::is_same_v<std::remove_reference_t<decltype(exec)>, decltype(std::execution::seq)>)
- {
- const auto results = detail::variance_sequential_impl<std::tuple<Real, Real, Real, Real>>(first, last);
- return std::make_pair(std::get<0>(results), std::get<2>(results)*std::get<3>(results)/(std::get<3>(results)-Real(1)));
- }
- else
- {
- const auto results = detail::first_four_moments_parallel_impl<std::tuple<Real, Real, Real, Real, Real>>(first, last);
- return std::make_pair(std::get<0>(results), std::get<1>(results) / (std::get<4>(results)-Real(1)));
- }
- }
- }
- template<class ExecutionPolicy, class Container>
- inline auto mean_and_sample_variance(ExecutionPolicy&& exec, Container const & v)
- {
- return mean_and_sample_variance(exec, std::cbegin(v), std::cend(v));
- }
- template<class ForwardIterator>
- inline auto mean_and_sample_variance(ForwardIterator first, ForwardIterator last)
- {
- return mean_and_sample_variance(std::execution::seq, first, last);
- }
- template<class Container>
- inline auto mean_and_sample_variance(Container const & v)
- {
- return mean_and_sample_variance(std::execution::seq, std::cbegin(v), std::cend(v));
- }
- template<class ExecutionPolicy, class ForwardIterator>
- inline auto first_four_moments(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last)
- {
- using Real = typename std::iterator_traits<ForwardIterator>::value_type;
- if constexpr (std::is_integral_v<Real>)
- {
- if constexpr (std::is_same_v<std::remove_reference_t<decltype(exec)>, decltype(std::execution::seq)>)
- {
- const auto results = detail::first_four_moments_sequential_impl<std::tuple<double, double, double, double, double>>(first, last);
- return std::make_tuple(std::get<0>(results), std::get<1>(results) / std::get<4>(results), std::get<2>(results) / std::get<4>(results),
- std::get<3>(results) / std::get<4>(results));
- }
- else
- {
- const auto results = detail::first_four_moments_parallel_impl<std::tuple<double, double, double, double, double>>(first, last);
- return std::make_tuple(std::get<0>(results), std::get<1>(results) / std::get<4>(results), std::get<2>(results) / std::get<4>(results),
- std::get<3>(results) / std::get<4>(results));
- }
- }
- else
- {
- if constexpr (std::is_same_v<std::remove_reference_t<decltype(exec)>, decltype(std::execution::seq)>)
- {
- const auto results = detail::first_four_moments_sequential_impl<std::tuple<Real, Real, Real, Real, Real>>(first, last);
- return std::make_tuple(std::get<0>(results), std::get<1>(results) / std::get<4>(results), std::get<2>(results) / std::get<4>(results),
- std::get<3>(results) / std::get<4>(results));
- }
- else
- {
- const auto results = detail::first_four_moments_parallel_impl<std::tuple<Real, Real, Real, Real, Real>>(first, last);
- return std::make_tuple(std::get<0>(results), std::get<1>(results) / std::get<4>(results), std::get<2>(results) / std::get<4>(results),
- std::get<3>(results) / std::get<4>(results));
- }
- }
- }
- template<class ExecutionPolicy, class Container>
- inline auto first_four_moments(ExecutionPolicy&& exec, Container const & v)
- {
- return first_four_moments(exec, std::cbegin(v), std::cend(v));
- }
- template<class ForwardIterator>
- inline auto first_four_moments(ForwardIterator first, ForwardIterator last)
- {
- return first_four_moments(std::execution::seq, first, last);
- }
- template<class Container>
- inline auto first_four_moments(Container const & v)
- {
- return first_four_moments(std::execution::seq, std::cbegin(v), std::cend(v));
- }
- // https://prod.sandia.gov/techlib-noauth/access-control.cgi/2008/086212.pdf
- template<class ExecutionPolicy, class ForwardIterator>
- inline auto skewness(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last)
- {
- using Real = typename std::iterator_traits<ForwardIterator>::value_type;
- using std::sqrt;
- if constexpr (std::is_same_v<std::remove_reference_t<decltype(exec)>, decltype(std::execution::seq)>)
- {
- if constexpr (std::is_integral_v<Real>)
- {
- return detail::skewness_sequential_impl<double>(first, last);
- }
- else
- {
- return detail::skewness_sequential_impl<Real>(first, last);
- }
- }
- else
- {
- const auto [M1, M2, M3, M4] = first_four_moments(exec, first, last);
- const auto n = std::distance(first, last);
- const auto var = M2/(n-1);
- if (M2 == 0)
- {
- // The limit is technically undefined, but the interpretation here is clear:
- // A constant dataset has no skewness.
- if constexpr (std::is_integral_v<Real>)
- {
- return static_cast<double>(0);
- }
- else
- {
- return Real(0);
- }
- }
- else
- {
- return M3/(M2*sqrt(var)) / Real(2);
- }
- }
- }
- template<class ExecutionPolicy, class Container>
- inline auto skewness(ExecutionPolicy&& exec, Container & v)
- {
- return skewness(exec, std::cbegin(v), std::cend(v));
- }
- template<class ForwardIterator>
- inline auto skewness(ForwardIterator first, ForwardIterator last)
- {
- return skewness(std::execution::seq, first, last);
- }
- template<class Container>
- inline auto skewness(Container const & v)
- {
- return skewness(std::execution::seq, std::cbegin(v), std::cend(v));
- }
- // Follows equation 1.6 of:
- // https://prod.sandia.gov/techlib-noauth/access-control.cgi/2008/086212.pdf
- template<class ExecutionPolicy, class ForwardIterator>
- inline auto kurtosis(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last)
- {
- const auto [M1, M2, M3, M4] = first_four_moments(exec, first, last);
- if (M2 == 0)
- {
- return M2;
- }
- return M4/(M2*M2);
- }
- template<class ExecutionPolicy, class Container>
- inline auto kurtosis(ExecutionPolicy&& exec, Container const & v)
- {
- return kurtosis(exec, std::cbegin(v), std::cend(v));
- }
- template<class ForwardIterator>
- inline auto kurtosis(ForwardIterator first, ForwardIterator last)
- {
- return kurtosis(std::execution::seq, first, last);
- }
- template<class Container>
- inline auto kurtosis(Container const & v)
- {
- return kurtosis(std::execution::seq, std::cbegin(v), std::cend(v));
- }
- template<class ExecutionPolicy, class ForwardIterator>
- inline auto excess_kurtosis(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last)
- {
- return kurtosis(exec, first, last) - 3;
- }
- template<class ExecutionPolicy, class Container>
- inline auto excess_kurtosis(ExecutionPolicy&& exec, Container const & v)
- {
- return excess_kurtosis(exec, std::cbegin(v), std::cend(v));
- }
- template<class ForwardIterator>
- inline auto excess_kurtosis(ForwardIterator first, ForwardIterator last)
- {
- return excess_kurtosis(std::execution::seq, first, last);
- }
- template<class Container>
- inline auto excess_kurtosis(Container const & v)
- {
- return excess_kurtosis(std::execution::seq, std::cbegin(v), std::cend(v));
- }
- template<class ExecutionPolicy, class RandomAccessIterator>
- auto median(ExecutionPolicy&& exec, RandomAccessIterator first, RandomAccessIterator last)
- {
- const auto num_elems = std::distance(first, last);
- BOOST_MATH_ASSERT_MSG(num_elems > 0, "The median of a zero length vector is undefined.");
- if (num_elems & 1)
- {
- auto middle = first + (num_elems - 1)/2;
- std::nth_element(exec, first, middle, last);
- return *middle;
- }
- else
- {
- auto middle = first + num_elems/2 - 1;
- std::nth_element(exec, first, middle, last);
- std::nth_element(exec, middle, middle+1, last);
- return (*middle + *(middle+1))/2;
- }
- }
- template<class ExecutionPolicy, class RandomAccessContainer>
- inline auto median(ExecutionPolicy&& exec, RandomAccessContainer & v)
- {
- return median(exec, std::begin(v), std::end(v));
- }
- template<class RandomAccessIterator>
- inline auto median(RandomAccessIterator first, RandomAccessIterator last)
- {
- return median(std::execution::seq, first, last);
- }
- template<class RandomAccessContainer>
- inline auto median(RandomAccessContainer & v)
- {
- return median(std::execution::seq, std::begin(v), std::end(v));
- }
- #if 0
- //
- // Parallel gini calculation is curently broken, see:
- // https://github.com/boostorg/math/issues/585
- // We will fix this at a later date, for now just use a serial implementation:
- //
- template<class ExecutionPolicy, class RandomAccessIterator>
- inline auto gini_coefficient(ExecutionPolicy&& exec, RandomAccessIterator first, RandomAccessIterator last)
- {
- using Real = typename std::iterator_traits<RandomAccessIterator>::value_type;
- if(!std::is_sorted(exec, first, last))
- {
- std::sort(exec, first, last);
- }
- if constexpr (std::is_same_v<std::remove_reference_t<decltype(exec)>, decltype(std::execution::seq)>)
- {
- if constexpr (std::is_integral_v<Real>)
- {
- return detail::gini_coefficient_sequential_impl<double>(first, last);
- }
- else
- {
- return detail::gini_coefficient_sequential_impl<Real>(first, last);
- }
- }
- else if constexpr (std::is_integral_v<Real>)
- {
- return detail::gini_coefficient_parallel_impl<double>(exec, first, last);
- }
- else
- {
- return detail::gini_coefficient_parallel_impl<Real>(exec, first, last);
- }
- }
- #else
- template<class ExecutionPolicy, class RandomAccessIterator>
- inline auto gini_coefficient(ExecutionPolicy&& exec, RandomAccessIterator first, RandomAccessIterator last)
- {
- using Real = typename std::iterator_traits<RandomAccessIterator>::value_type;
- if (!std::is_sorted(exec, first, last))
- {
- std::sort(exec, first, last);
- }
- if constexpr (std::is_integral_v<Real>)
- {
- return detail::gini_coefficient_sequential_impl<double>(first, last);
- }
- else
- {
- return detail::gini_coefficient_sequential_impl<Real>(first, last);
- }
- }
- #endif
- template<class ExecutionPolicy, class RandomAccessContainer>
- inline auto gini_coefficient(ExecutionPolicy&& exec, RandomAccessContainer & v)
- {
- return gini_coefficient(exec, std::begin(v), std::end(v));
- }
- template<class RandomAccessIterator>
- inline auto gini_coefficient(RandomAccessIterator first, RandomAccessIterator last)
- {
- return gini_coefficient(std::execution::seq, first, last);
- }
- template<class RandomAccessContainer>
- inline auto gini_coefficient(RandomAccessContainer & v)
- {
- return gini_coefficient(std::execution::seq, std::begin(v), std::end(v));
- }
- template<class ExecutionPolicy, class RandomAccessIterator>
- inline auto sample_gini_coefficient(ExecutionPolicy&& exec, RandomAccessIterator first, RandomAccessIterator last)
- {
- const auto n = std::distance(first, last);
- return n*gini_coefficient(exec, first, last)/(n-1);
- }
- template<class ExecutionPolicy, class RandomAccessContainer>
- inline auto sample_gini_coefficient(ExecutionPolicy&& exec, RandomAccessContainer & v)
- {
- return sample_gini_coefficient(exec, std::begin(v), std::end(v));
- }
- template<class RandomAccessIterator>
- inline auto sample_gini_coefficient(RandomAccessIterator first, RandomAccessIterator last)
- {
- return sample_gini_coefficient(std::execution::seq, first, last);
- }
- template<class RandomAccessContainer>
- inline auto sample_gini_coefficient(RandomAccessContainer & v)
- {
- return sample_gini_coefficient(std::execution::seq, std::begin(v), std::end(v));
- }
- template<class ExecutionPolicy, class RandomAccessIterator>
- auto median_absolute_deviation(ExecutionPolicy&& exec, RandomAccessIterator first, RandomAccessIterator last,
- typename std::iterator_traits<RandomAccessIterator>::value_type center=std::numeric_limits<typename std::iterator_traits<RandomAccessIterator>::value_type>::quiet_NaN())
- {
- using std::abs;
- using Real = typename std::iterator_traits<RandomAccessIterator>::value_type;
- using std::isnan;
- if (isnan(center))
- {
- center = boost::math::statistics::median(exec, first, last);
- }
- const auto num_elems = std::distance(first, last);
- BOOST_MATH_ASSERT_MSG(num_elems > 0, "The median of a zero-length vector is undefined.");
- auto comparator = [¢er](Real a, Real b) { return abs(a-center) < abs(b-center);};
- if (num_elems & 1)
- {
- auto middle = first + (num_elems - 1)/2;
- std::nth_element(exec, first, middle, last, comparator);
- return abs(*middle-center);
- }
- else
- {
- auto middle = first + num_elems/2 - 1;
- std::nth_element(exec, first, middle, last, comparator);
- std::nth_element(exec, middle, middle+1, last, comparator);
- return (abs(*middle-center) + abs(*(middle+1)-center))/abs(static_cast<Real>(2));
- }
- }
- template<class ExecutionPolicy, class RandomAccessContainer>
- inline auto median_absolute_deviation(ExecutionPolicy&& exec, RandomAccessContainer & v,
- typename RandomAccessContainer::value_type center=std::numeric_limits<typename RandomAccessContainer::value_type>::quiet_NaN())
- {
- return median_absolute_deviation(exec, std::begin(v), std::end(v), center);
- }
- template<class RandomAccessIterator>
- inline auto median_absolute_deviation(RandomAccessIterator first, RandomAccessIterator last,
- typename RandomAccessIterator::value_type center=std::numeric_limits<typename RandomAccessIterator::value_type>::quiet_NaN())
- {
- return median_absolute_deviation(std::execution::seq, first, last, center);
- }
- template<class RandomAccessContainer>
- inline auto median_absolute_deviation(RandomAccessContainer & v,
- typename RandomAccessContainer::value_type center=std::numeric_limits<typename RandomAccessContainer::value_type>::quiet_NaN())
- {
- return median_absolute_deviation(std::execution::seq, std::begin(v), std::end(v), center);
- }
- template<class ExecutionPolicy, class ForwardIterator>
- auto interquartile_range(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last)
- {
- using Real = typename std::iterator_traits<ForwardIterator>::value_type;
- static_assert(!std::is_integral_v<Real>, "Integer values have not yet been implemented.");
- auto m = std::distance(first,last);
- BOOST_MATH_ASSERT_MSG(m >= 3, "At least 3 samples are required to compute the interquartile range.");
- auto k = m/4;
- auto j = m - (4*k);
- // m = 4k+j.
- // If j = 0 or j = 1, then there are an even number of samples below the median, and an even number above the median.
- // Then we must average adjacent elements to get the quartiles.
- // If j = 2 or j = 3, there are an odd number of samples above and below the median, these elements may be directly extracted to get the quartiles.
- if (j==2 || j==3)
- {
- auto q1 = first + k;
- auto q3 = first + 3*k + j - 1;
- std::nth_element(exec, first, q1, last);
- Real Q1 = *q1;
- std::nth_element(exec, q1, q3, last);
- Real Q3 = *q3;
- return Q3 - Q1;
- } else {
- // j == 0 or j==1:
- auto q1 = first + k - 1;
- auto q3 = first + 3*k - 1 + j;
- std::nth_element(exec, first, q1, last);
- Real a = *q1;
- std::nth_element(exec, q1, q1 + 1, last);
- Real b = *(q1 + 1);
- Real Q1 = (a+b)/2;
- std::nth_element(exec, q1, q3, last);
- a = *q3;
- std::nth_element(exec, q3, q3 + 1, last);
- b = *(q3 + 1);
- Real Q3 = (a+b)/2;
- return Q3 - Q1;
- }
- }
- template<class ExecutionPolicy, class RandomAccessContainer>
- inline auto interquartile_range(ExecutionPolicy&& exec, RandomAccessContainer & v)
- {
- return interquartile_range(exec, std::begin(v), std::end(v));
- }
- template<class RandomAccessIterator>
- inline auto interquartile_range(RandomAccessIterator first, RandomAccessIterator last)
- {
- return interquartile_range(std::execution::seq, first, last);
- }
- template<class RandomAccessContainer>
- inline auto interquartile_range(RandomAccessContainer & v)
- {
- return interquartile_range(std::execution::seq, std::begin(v), std::end(v));
- }
- template<class ExecutionPolicy, class ForwardIterator, class OutputIterator>
- inline OutputIterator mode(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last, OutputIterator output)
- {
- if(!std::is_sorted(exec, first, last))
- {
- if constexpr (std::is_same_v<typename std::iterator_traits<ForwardIterator>::iterator_category(), std::random_access_iterator_tag>)
- {
- std::sort(exec, first, last);
- }
- else
- {
- BOOST_MATH_ASSERT("Data must be sorted for sequential mode calculation");
- }
- }
- return detail::mode_impl(first, last, output);
- }
- template<class ExecutionPolicy, class Container, class OutputIterator>
- inline OutputIterator mode(ExecutionPolicy&& exec, Container & v, OutputIterator output)
- {
- return mode(exec, std::begin(v), std::end(v), output);
- }
- template<class ForwardIterator, class OutputIterator>
- inline OutputIterator mode(ForwardIterator first, ForwardIterator last, OutputIterator output)
- {
- return mode(std::execution::seq, first, last, output);
- }
- // Requires enable_if_t to not clash with impl that returns std::list
- // Very ugly. std::is_execution_policy_v returns false for the std::execution objects and decltype of the objects (e.g. std::execution::seq)
- template<class Container, class OutputIterator, std::enable_if_t<!std::is_convertible_v<std::execution::sequenced_policy, Container> &&
- !std::is_convertible_v<std::execution::parallel_unsequenced_policy, Container> &&
- !std::is_convertible_v<std::execution::parallel_policy, Container>
- #if __cpp_lib_execution > 201900
- && !std::is_convertible_v<std::execution::unsequenced_policy, Container>
- #endif
- , bool> = true>
- inline OutputIterator mode(Container & v, OutputIterator output)
- {
- return mode(std::execution::seq, std::begin(v), std::end(v), output);
- }
- // std::list is the return type for the proposed STL stats library
- template<class ExecutionPolicy, class ForwardIterator, class Real = typename std::iterator_traits<ForwardIterator>::value_type>
- inline auto mode(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last)
- {
- std::list<Real> modes;
- mode(exec, first, last, std::inserter(modes, modes.begin()));
- return modes;
- }
- template<class ExecutionPolicy, class Container>
- inline auto mode(ExecutionPolicy&& exec, Container & v)
- {
- return mode(exec, std::begin(v), std::end(v));
- }
- template<class ForwardIterator>
- inline auto mode(ForwardIterator first, ForwardIterator last)
- {
- return mode(std::execution::seq, first, last);
- }
- template<class Container>
- inline auto mode(Container & v)
- {
- return mode(std::execution::seq, std::begin(v), std::end(v));
- }
- } // Namespace boost::math::statistics
- #else // Backwards compatible bindings for C++11 or execution is not implemented
- namespace boost { namespace math { namespace statistics {
- template<bool B, class T = void>
- using enable_if_t = typename std::enable_if<B, T>::type;
- template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
- enable_if_t<std::is_integral<Real>::value, bool> = true>
- inline double mean(const ForwardIterator first, const ForwardIterator last)
- {
- BOOST_MATH_ASSERT_MSG(first != last, "At least one sample is required to compute the mean.");
- return detail::mean_sequential_impl<double>(first, last);
- }
- template<class Container, typename Real = typename Container::value_type,
- enable_if_t<std::is_integral<Real>::value, bool> = true>
- inline double mean(const Container& c)
- {
- return mean(std::begin(c), std::end(c));
- }
- template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
- enable_if_t<!std::is_integral<Real>::value, bool> = true>
- inline Real mean(const ForwardIterator first, const ForwardIterator last)
- {
- BOOST_MATH_ASSERT_MSG(first != last, "At least one sample is required to compute the mean.");
- return detail::mean_sequential_impl<Real>(first, last);
- }
- template<class Container, typename Real = typename Container::value_type,
- enable_if_t<!std::is_integral<Real>::value, bool> = true>
- inline Real mean(const Container& c)
- {
- return mean(std::begin(c), std::end(c));
- }
- template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
- enable_if_t<std::is_integral<Real>::value, bool> = true>
- inline double variance(const ForwardIterator first, const ForwardIterator last)
- {
- return std::get<2>(detail::variance_sequential_impl<std::tuple<double, double, double, double>>(first, last));
- }
- template<class Container, typename Real = typename Container::value_type,
- enable_if_t<std::is_integral<Real>::value, bool> = true>
- inline double variance(const Container& c)
- {
- return variance(std::begin(c), std::end(c));
- }
- template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
- enable_if_t<!std::is_integral<Real>::value, bool> = true>
- inline Real variance(const ForwardIterator first, const ForwardIterator last)
- {
- return std::get<2>(detail::variance_sequential_impl<std::tuple<Real, Real, Real, Real>>(first, last));
- }
- template<class Container, typename Real = typename Container::value_type,
- enable_if_t<!std::is_integral<Real>::value, bool> = true>
- inline Real variance(const Container& c)
- {
- return variance(std::begin(c), std::end(c));
- }
- template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
- enable_if_t<std::is_integral<Real>::value, bool> = true>
- inline double sample_variance(const ForwardIterator first, const ForwardIterator last)
- {
- const auto n = std::distance(first, last);
- BOOST_MATH_ASSERT_MSG(n > 1, "At least two samples are required to compute the sample variance.");
- return n*variance(first, last)/(n-1);
- }
- template<class Container, typename Real = typename Container::value_type,
- enable_if_t<std::is_integral<Real>::value, bool> = true>
- inline double sample_variance(const Container& c)
- {
- return sample_variance(std::begin(c), std::end(c));
- }
- template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
- enable_if_t<!std::is_integral<Real>::value, bool> = true>
- inline Real sample_variance(const ForwardIterator first, const ForwardIterator last)
- {
- const auto n = std::distance(first, last);
- BOOST_MATH_ASSERT_MSG(n > 1, "At least two samples are required to compute the sample variance.");
- return n*variance(first, last)/(n-1);
- }
- template<class Container, typename Real = typename Container::value_type,
- enable_if_t<!std::is_integral<Real>::value, bool> = true>
- inline Real sample_variance(const Container& c)
- {
- return sample_variance(std::begin(c), std::end(c));
- }
- template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
- enable_if_t<std::is_integral<Real>::value, bool> = true>
- inline std::pair<double, double> mean_and_sample_variance(const ForwardIterator first, const ForwardIterator last)
- {
- const auto results = detail::variance_sequential_impl<std::tuple<double, double, double, double>>(first, last);
- return std::make_pair(std::get<0>(results), std::get<3>(results)*std::get<2>(results)/(std::get<3>(results)-1.0));
- }
- template<class Container, typename Real = typename Container::value_type,
- enable_if_t<std::is_integral<Real>::value, bool> = true>
- inline std::pair<double, double> mean_and_sample_variance(const Container& c)
- {
- return mean_and_sample_variance(std::begin(c), std::end(c));
- }
- template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
- enable_if_t<!std::is_integral<Real>::value, bool> = true>
- inline std::pair<Real, Real> mean_and_sample_variance(const ForwardIterator first, const ForwardIterator last)
- {
- const auto results = detail::variance_sequential_impl<std::tuple<Real, Real, Real, Real>>(first, last);
- return std::make_pair(std::get<0>(results), std::get<3>(results)*std::get<2>(results)/(std::get<3>(results)-Real(1)));
- }
- template<class Container, typename Real = typename Container::value_type,
- enable_if_t<!std::is_integral<Real>::value, bool> = true>
- inline std::pair<Real, Real> mean_and_sample_variance(const Container& c)
- {
- return mean_and_sample_variance(std::begin(c), std::end(c));
- }
- template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
- enable_if_t<std::is_integral<Real>::value, bool> = true>
- inline std::tuple<double, double, double, double> first_four_moments(const ForwardIterator first, const ForwardIterator last)
- {
- const auto results = detail::first_four_moments_sequential_impl<std::tuple<double, double, double, double, double>>(first, last);
- return std::make_tuple(std::get<0>(results), std::get<1>(results) / std::get<4>(results), std::get<2>(results) / std::get<4>(results),
- std::get<3>(results) / std::get<4>(results));
- }
- template<class Container, typename Real = typename Container::value_type,
- enable_if_t<std::is_integral<Real>::value, bool> = true>
- inline std::tuple<double, double, double, double> first_four_moments(const Container& c)
- {
- return first_four_moments(std::begin(c), std::end(c));
- }
- template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
- enable_if_t<!std::is_integral<Real>::value, bool> = true>
- inline std::tuple<Real, Real, Real, Real> first_four_moments(const ForwardIterator first, const ForwardIterator last)
- {
- const auto results = detail::first_four_moments_sequential_impl<std::tuple<Real, Real, Real, Real, Real>>(first, last);
- return std::make_tuple(std::get<0>(results), std::get<1>(results) / std::get<4>(results), std::get<2>(results) / std::get<4>(results),
- std::get<3>(results) / std::get<4>(results));
- }
- template<class Container, typename Real = typename Container::value_type,
- enable_if_t<!std::is_integral<Real>::value, bool> = true>
- inline std::tuple<Real, Real, Real, Real> first_four_moments(const Container& c)
- {
- return first_four_moments(std::begin(c), std::end(c));
- }
- template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
- enable_if_t<std::is_integral<Real>::value, bool> = true>
- inline double skewness(const ForwardIterator first, const ForwardIterator last)
- {
- return detail::skewness_sequential_impl<double>(first, last);
- }
- template<class Container, typename Real = typename Container::value_type,
- enable_if_t<std::is_integral<Real>::value, bool> = true>
- inline double skewness(const Container& c)
- {
- return skewness(std::begin(c), std::end(c));
- }
- template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
- enable_if_t<!std::is_integral<Real>::value, bool> = true>
- inline Real skewness(const ForwardIterator first, const ForwardIterator last)
- {
- return detail::skewness_sequential_impl<Real>(first, last);
- }
- template<class Container, typename Real = typename Container::value_type,
- enable_if_t<!std::is_integral<Real>::value, bool> = true>
- inline Real skewness(const Container& c)
- {
- return skewness(std::begin(c), std::end(c));
- }
- template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
- enable_if_t<std::is_integral<Real>::value, bool> = true>
- inline double kurtosis(const ForwardIterator first, const ForwardIterator last)
- {
- std::tuple<double, double, double, double> M = first_four_moments(first, last);
- if(std::get<1>(M) == 0)
- {
- return std::get<1>(M);
- }
- else
- {
- return std::get<3>(M)/(std::get<1>(M)*std::get<1>(M));
- }
- }
- template<class Container, typename Real = typename Container::value_type,
- enable_if_t<std::is_integral<Real>::value, bool> = true>
- inline double kurtosis(const Container& c)
- {
- return kurtosis(std::begin(c), std::end(c));
- }
- template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
- enable_if_t<!std::is_integral<Real>::value, bool> = true>
- inline Real kurtosis(const ForwardIterator first, const ForwardIterator last)
- {
- std::tuple<Real, Real, Real, Real> M = first_four_moments(first, last);
- if(std::get<1>(M) == 0)
- {
- return std::get<1>(M);
- }
- else
- {
- return std::get<3>(M)/(std::get<1>(M)*std::get<1>(M));
- }
- }
- template<class Container, typename Real = typename Container::value_type,
- enable_if_t<!std::is_integral<Real>::value, bool> = true>
- inline Real kurtosis(const Container& c)
- {
- return kurtosis(std::begin(c), std::end(c));
- }
- template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
- enable_if_t<std::is_integral<Real>::value, bool> = true>
- inline double excess_kurtosis(const ForwardIterator first, const ForwardIterator last)
- {
- return kurtosis(first, last) - 3;
- }
- template<class Container, typename Real = typename Container::value_type,
- enable_if_t<std::is_integral<Real>::value, bool> = true>
- inline double excess_kurtosis(const Container& c)
- {
- return excess_kurtosis(std::begin(c), std::end(c));
- }
- template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
- enable_if_t<!std::is_integral<Real>::value, bool> = true>
- inline Real excess_kurtosis(const ForwardIterator first, const ForwardIterator last)
- {
- return kurtosis(first, last) - 3;
- }
- template<class Container, typename Real = typename Container::value_type,
- enable_if_t<!std::is_integral<Real>::value, bool> = true>
- inline Real excess_kurtosis(const Container& c)
- {
- return excess_kurtosis(std::begin(c), std::end(c));
- }
- template<class RandomAccessIterator, typename Real = typename std::iterator_traits<RandomAccessIterator>::value_type>
- Real median(RandomAccessIterator first, RandomAccessIterator last)
- {
- const auto num_elems = std::distance(first, last);
- BOOST_MATH_ASSERT_MSG(num_elems > 0, "The median of a zero length vector is undefined.");
- if (num_elems & 1)
- {
- auto middle = first + (num_elems - 1)/2;
- std::nth_element(first, middle, last);
- return *middle;
- }
- else
- {
- auto middle = first + num_elems/2 - 1;
- std::nth_element(first, middle, last);
- std::nth_element(middle, middle+1, last);
- return (*middle + *(middle+1))/2;
- }
- }
- template<class RandomAccessContainer, typename Real = typename RandomAccessContainer::value_type>
- inline Real median(RandomAccessContainer& c)
- {
- return median(std::begin(c), std::end(c));
- }
- template<class RandomAccessIterator, typename Real = typename std::iterator_traits<RandomAccessIterator>::value_type,
- enable_if_t<std::is_integral<Real>::value, bool> = true>
- inline double gini_coefficient(RandomAccessIterator first, RandomAccessIterator last)
- {
- if(!std::is_sorted(first, last))
- {
- std::sort(first, last);
- }
- return detail::gini_coefficient_sequential_impl<double>(first, last);
- }
- template<class RandomAccessContainer, typename Real = typename RandomAccessContainer::value_type,
- enable_if_t<std::is_integral<Real>::value, bool> = true>
- inline double gini_coefficient(RandomAccessContainer& c)
- {
- return gini_coefficient(std::begin(c), std::end(c));
- }
- template<class RandomAccessIterator, typename Real = typename std::iterator_traits<RandomAccessIterator>::value_type,
- enable_if_t<!std::is_integral<Real>::value, bool> = true>
- inline Real gini_coefficient(RandomAccessIterator first, RandomAccessIterator last)
- {
- if(!std::is_sorted(first, last))
- {
- std::sort(first, last);
- }
- return detail::gini_coefficient_sequential_impl<Real>(first, last);
- }
- template<class RandomAccessContainer, typename Real = typename RandomAccessContainer::value_type,
- enable_if_t<!std::is_integral<Real>::value, bool> = true>
- inline Real gini_coefficient(RandomAccessContainer& c)
- {
- return gini_coefficient(std::begin(c), std::end(c));
- }
- template<class RandomAccessIterator, typename Real = typename std::iterator_traits<RandomAccessIterator>::value_type,
- enable_if_t<std::is_integral<Real>::value, bool> = true>
- inline double sample_gini_coefficient(RandomAccessIterator first, RandomAccessIterator last)
- {
- const auto n = std::distance(first, last);
- return n*gini_coefficient(first, last)/(n-1);
- }
- template<class RandomAccessContainer, typename Real = typename RandomAccessContainer::value_type,
- enable_if_t<std::is_integral<Real>::value, bool> = true>
- inline double sample_gini_coefficient(RandomAccessContainer& c)
- {
- return sample_gini_coefficient(std::begin(c), std::end(c));
- }
- template<class RandomAccessIterator, typename Real = typename std::iterator_traits<RandomAccessIterator>::value_type,
- enable_if_t<!std::is_integral<Real>::value, bool> = true>
- inline Real sample_gini_coefficient(RandomAccessIterator first, RandomAccessIterator last)
- {
- const auto n = std::distance(first, last);
- return n*gini_coefficient(first, last)/(n-1);
- }
- template<class RandomAccessContainer, typename Real = typename RandomAccessContainer::value_type,
- enable_if_t<!std::is_integral<Real>::value, bool> = true>
- inline Real sample_gini_coefficient(RandomAccessContainer& c)
- {
- return sample_gini_coefficient(std::begin(c), std::end(c));
- }
- template<class RandomAccessIterator, typename Real = typename std::iterator_traits<RandomAccessIterator>::value_type>
- Real median_absolute_deviation(RandomAccessIterator first, RandomAccessIterator last,
- typename std::iterator_traits<RandomAccessIterator>::value_type center=std::numeric_limits<typename std::iterator_traits<RandomAccessIterator>::value_type>::quiet_NaN())
- {
- using std::abs;
- using std::isnan;
- if (isnan(center))
- {
- center = boost::math::statistics::median(first, last);
- }
- const auto num_elems = std::distance(first, last);
- BOOST_MATH_ASSERT_MSG(num_elems > 0, "The median of a zero-length vector is undefined.");
- auto comparator = [¢er](Real a, Real b) { return abs(a-center) < abs(b-center);};
- if (num_elems & 1)
- {
- auto middle = first + (num_elems - 1)/2;
- std::nth_element(first, middle, last, comparator);
- return abs(*middle-center);
- }
- else
- {
- auto middle = first + num_elems/2 - 1;
- std::nth_element(first, middle, last, comparator);
- std::nth_element(middle, middle+1, last, comparator);
- return (abs(*middle-center) + abs(*(middle+1)-center))/abs(static_cast<Real>(2));
- }
- }
- template<class RandomAccessContainer, typename Real = typename RandomAccessContainer::value_type>
- inline Real median_absolute_deviation(RandomAccessContainer& c,
- typename RandomAccessContainer::value_type center=std::numeric_limits<typename RandomAccessContainer::value_type>::quiet_NaN())
- {
- return median_absolute_deviation(std::begin(c), std::end(c), center);
- }
- template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type>
- Real interquartile_range(ForwardIterator first, ForwardIterator last)
- {
- static_assert(!std::is_integral<Real>::value, "Integer values have not yet been implemented.");
- auto m = std::distance(first,last);
- BOOST_MATH_ASSERT_MSG(m >= 3, "At least 3 samples are required to compute the interquartile range.");
- auto k = m/4;
- auto j = m - (4*k);
- // m = 4k+j.
- // If j = 0 or j = 1, then there are an even number of samples below the median, and an even number above the median.
- // Then we must average adjacent elements to get the quartiles.
- // If j = 2 or j = 3, there are an odd number of samples above and below the median, these elements may be directly extracted to get the quartiles.
- if (j==2 || j==3)
- {
- auto q1 = first + k;
- auto q3 = first + 3*k + j - 1;
- std::nth_element(first, q1, last);
- Real Q1 = *q1;
- std::nth_element(q1, q3, last);
- Real Q3 = *q3;
- return Q3 - Q1;
- }
- else
- {
- // j == 0 or j==1:
- auto q1 = first + k - 1;
- auto q3 = first + 3*k - 1 + j;
- std::nth_element(first, q1, last);
- Real a = *q1;
- std::nth_element(q1, q1 + 1, last);
- Real b = *(q1 + 1);
- Real Q1 = (a+b)/2;
- std::nth_element(q1, q3, last);
- a = *q3;
- std::nth_element(q3, q3 + 1, last);
- b = *(q3 + 1);
- Real Q3 = (a+b)/2;
- return Q3 - Q1;
- }
- }
- template<class Container, typename Real = typename Container::value_type>
- Real interquartile_range(Container& c)
- {
- return interquartile_range(std::begin(c), std::end(c));
- }
- template<class ForwardIterator, class OutputIterator,
- enable_if_t<std::is_same<typename std::iterator_traits<ForwardIterator>::iterator_category(), std::random_access_iterator_tag>::value, bool> = true>
- inline OutputIterator mode(ForwardIterator first, ForwardIterator last, OutputIterator output)
- {
- if(!std::is_sorted(first, last))
- {
- std::sort(first, last);
- }
- return detail::mode_impl(first, last, output);
- }
- template<class ForwardIterator, class OutputIterator,
- enable_if_t<!std::is_same<typename std::iterator_traits<ForwardIterator>::iterator_category(), std::random_access_iterator_tag>::value, bool> = true>
- inline OutputIterator mode(ForwardIterator first, ForwardIterator last, OutputIterator output)
- {
- if(!std::is_sorted(first, last))
- {
- BOOST_MATH_ASSERT("Data must be sorted for mode calculation");
- }
- return detail::mode_impl(first, last, output);
- }
- template<class Container, class OutputIterator>
- inline OutputIterator mode(Container& c, OutputIterator output)
- {
- return mode(std::begin(c), std::end(c), output);
- }
- template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type>
- inline std::list<Real> mode(ForwardIterator first, ForwardIterator last)
- {
- std::list<Real> modes;
- mode(first, last, std::inserter(modes, modes.begin()));
- return modes;
- }
- template<class Container, typename Real = typename Container::value_type>
- inline std::list<Real> mode(Container& c)
- {
- return mode(std::begin(c), std::end(c));
- }
- }}}
- #endif
- #endif // BOOST_MATH_STATISTICS_UNIVARIATE_STATISTICS_HPP
|