univariate_statistics.hpp 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184
  1. // (C) Copyright Nick Thompson 2018.
  2. // (C) Copyright Matt Borland 2020.
  3. // Use, modification and distribution are subject to the
  4. // Boost Software License, Version 1.0. (See accompanying file
  5. // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
  6. #ifndef BOOST_MATH_STATISTICS_UNIVARIATE_STATISTICS_HPP
  7. #define BOOST_MATH_STATISTICS_UNIVARIATE_STATISTICS_HPP
  8. #include <boost/math/statistics/detail/single_pass.hpp>
  9. #include <boost/math/tools/config.hpp>
  10. #include <boost/math/tools/assert.hpp>
  11. #include <algorithm>
  12. #include <iterator>
  13. #include <tuple>
  14. #include <cmath>
  15. #include <vector>
  16. #include <type_traits>
  17. #include <utility>
  18. #include <numeric>
  19. #include <list>
  20. #ifdef BOOST_MATH_EXEC_COMPATIBLE
  21. #include <execution>
  22. namespace boost::math::statistics {
  23. template<class ExecutionPolicy, class ForwardIterator>
  24. inline auto mean(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last)
  25. {
  26. using Real = typename std::iterator_traits<ForwardIterator>::value_type;
  27. BOOST_MATH_ASSERT_MSG(first != last, "At least one sample is required to compute the mean.");
  28. if constexpr (std::is_integral_v<Real>)
  29. {
  30. if constexpr (std::is_same_v<std::remove_reference_t<decltype(exec)>, decltype(std::execution::seq)>)
  31. {
  32. return detail::mean_sequential_impl<double>(first, last);
  33. }
  34. else
  35. {
  36. return std::reduce(exec, first, last, 0.0) / std::distance(first, last);
  37. }
  38. }
  39. else
  40. {
  41. if constexpr (std::is_same_v<std::remove_reference_t<decltype(exec)>, decltype(std::execution::seq)>)
  42. {
  43. return detail::mean_sequential_impl<Real>(first, last);
  44. }
  45. else
  46. {
  47. return std::reduce(exec, first, last, Real(0.0)) / Real(std::distance(first, last));
  48. }
  49. }
  50. }
  51. template<class ExecutionPolicy, class Container>
  52. inline auto mean(ExecutionPolicy&& exec, Container const & v)
  53. {
  54. return mean(exec, std::cbegin(v), std::cend(v));
  55. }
  56. template<class ForwardIterator>
  57. inline auto mean(ForwardIterator first, ForwardIterator last)
  58. {
  59. return mean(std::execution::seq, first, last);
  60. }
  61. template<class Container>
  62. inline auto mean(Container const & v)
  63. {
  64. return mean(std::execution::seq, std::cbegin(v), std::cend(v));
  65. }
  66. template<class ExecutionPolicy, class ForwardIterator>
  67. inline auto variance(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last)
  68. {
  69. using Real = typename std::iterator_traits<ForwardIterator>::value_type;
  70. if constexpr (std::is_integral_v<Real>)
  71. {
  72. if constexpr (std::is_same_v<std::remove_reference_t<decltype(exec)>, decltype(std::execution::seq)>)
  73. {
  74. return std::get<2>(detail::variance_sequential_impl<std::tuple<double, double, double, double>>(first, last));
  75. }
  76. else
  77. {
  78. const auto results = detail::first_four_moments_parallel_impl<std::tuple<double, double, double, double, double>>(first, last);
  79. return std::get<1>(results) / std::get<4>(results);
  80. }
  81. }
  82. else
  83. {
  84. if constexpr (std::is_same_v<std::remove_reference_t<decltype(exec)>, decltype(std::execution::seq)>)
  85. {
  86. return std::get<2>(detail::variance_sequential_impl<std::tuple<Real, Real, Real, Real>>(first, last));
  87. }
  88. else
  89. {
  90. const auto results = detail::first_four_moments_parallel_impl<std::tuple<Real, Real, Real, Real, Real>>(first, last);
  91. return std::get<1>(results) / std::get<4>(results);
  92. }
  93. }
  94. }
  95. template<class ExecutionPolicy, class Container>
  96. inline auto variance(ExecutionPolicy&& exec, Container const & v)
  97. {
  98. return variance(exec, std::cbegin(v), std::cend(v));
  99. }
  100. template<class ForwardIterator>
  101. inline auto variance(ForwardIterator first, ForwardIterator last)
  102. {
  103. return variance(std::execution::seq, first, last);
  104. }
  105. template<class Container>
  106. inline auto variance(Container const & v)
  107. {
  108. return variance(std::execution::seq, std::cbegin(v), std::cend(v));
  109. }
  110. template<class ExecutionPolicy, class ForwardIterator>
  111. inline auto sample_variance(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last)
  112. {
  113. const auto n = std::distance(first, last);
  114. BOOST_MATH_ASSERT_MSG(n > 1, "At least two samples are required to compute the sample variance.");
  115. return n*variance(exec, first, last)/(n-1);
  116. }
  117. template<class ExecutionPolicy, class Container>
  118. inline auto sample_variance(ExecutionPolicy&& exec, Container const & v)
  119. {
  120. return sample_variance(exec, std::cbegin(v), std::cend(v));
  121. }
  122. template<class ForwardIterator>
  123. inline auto sample_variance(ForwardIterator first, ForwardIterator last)
  124. {
  125. return sample_variance(std::execution::seq, first, last);
  126. }
  127. template<class Container>
  128. inline auto sample_variance(Container const & v)
  129. {
  130. return sample_variance(std::execution::seq, std::cbegin(v), std::cend(v));
  131. }
  132. template<class ExecutionPolicy, class ForwardIterator>
  133. inline auto mean_and_sample_variance(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last)
  134. {
  135. using Real = typename std::iterator_traits<ForwardIterator>::value_type;
  136. if constexpr (std::is_integral_v<Real>)
  137. {
  138. if constexpr (std::is_same_v<std::remove_reference_t<decltype(exec)>, decltype(std::execution::seq)>)
  139. {
  140. const auto results = detail::variance_sequential_impl<std::tuple<double, double, double, double>>(first, last);
  141. return std::make_pair(std::get<0>(results), std::get<2>(results)*std::get<3>(results)/(std::get<3>(results)-1.0));
  142. }
  143. else
  144. {
  145. const auto results = detail::first_four_moments_parallel_impl<std::tuple<double, double, double, double, double>>(first, last);
  146. return std::make_pair(std::get<0>(results), std::get<1>(results) / (std::get<4>(results)-1.0));
  147. }
  148. }
  149. else
  150. {
  151. if constexpr (std::is_same_v<std::remove_reference_t<decltype(exec)>, decltype(std::execution::seq)>)
  152. {
  153. const auto results = detail::variance_sequential_impl<std::tuple<Real, Real, Real, Real>>(first, last);
  154. return std::make_pair(std::get<0>(results), std::get<2>(results)*std::get<3>(results)/(std::get<3>(results)-Real(1)));
  155. }
  156. else
  157. {
  158. const auto results = detail::first_four_moments_parallel_impl<std::tuple<Real, Real, Real, Real, Real>>(first, last);
  159. return std::make_pair(std::get<0>(results), std::get<1>(results) / (std::get<4>(results)-Real(1)));
  160. }
  161. }
  162. }
  163. template<class ExecutionPolicy, class Container>
  164. inline auto mean_and_sample_variance(ExecutionPolicy&& exec, Container const & v)
  165. {
  166. return mean_and_sample_variance(exec, std::cbegin(v), std::cend(v));
  167. }
  168. template<class ForwardIterator>
  169. inline auto mean_and_sample_variance(ForwardIterator first, ForwardIterator last)
  170. {
  171. return mean_and_sample_variance(std::execution::seq, first, last);
  172. }
  173. template<class Container>
  174. inline auto mean_and_sample_variance(Container const & v)
  175. {
  176. return mean_and_sample_variance(std::execution::seq, std::cbegin(v), std::cend(v));
  177. }
  178. template<class ExecutionPolicy, class ForwardIterator>
  179. inline auto first_four_moments(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last)
  180. {
  181. using Real = typename std::iterator_traits<ForwardIterator>::value_type;
  182. if constexpr (std::is_integral_v<Real>)
  183. {
  184. if constexpr (std::is_same_v<std::remove_reference_t<decltype(exec)>, decltype(std::execution::seq)>)
  185. {
  186. const auto results = detail::first_four_moments_sequential_impl<std::tuple<double, double, double, double, double>>(first, last);
  187. return std::make_tuple(std::get<0>(results), std::get<1>(results) / std::get<4>(results), std::get<2>(results) / std::get<4>(results),
  188. std::get<3>(results) / std::get<4>(results));
  189. }
  190. else
  191. {
  192. const auto results = detail::first_four_moments_parallel_impl<std::tuple<double, double, double, double, double>>(first, last);
  193. return std::make_tuple(std::get<0>(results), std::get<1>(results) / std::get<4>(results), std::get<2>(results) / std::get<4>(results),
  194. std::get<3>(results) / std::get<4>(results));
  195. }
  196. }
  197. else
  198. {
  199. if constexpr (std::is_same_v<std::remove_reference_t<decltype(exec)>, decltype(std::execution::seq)>)
  200. {
  201. const auto results = detail::first_four_moments_sequential_impl<std::tuple<Real, Real, Real, Real, Real>>(first, last);
  202. return std::make_tuple(std::get<0>(results), std::get<1>(results) / std::get<4>(results), std::get<2>(results) / std::get<4>(results),
  203. std::get<3>(results) / std::get<4>(results));
  204. }
  205. else
  206. {
  207. const auto results = detail::first_four_moments_parallel_impl<std::tuple<Real, Real, Real, Real, Real>>(first, last);
  208. return std::make_tuple(std::get<0>(results), std::get<1>(results) / std::get<4>(results), std::get<2>(results) / std::get<4>(results),
  209. std::get<3>(results) / std::get<4>(results));
  210. }
  211. }
  212. }
  213. template<class ExecutionPolicy, class Container>
  214. inline auto first_four_moments(ExecutionPolicy&& exec, Container const & v)
  215. {
  216. return first_four_moments(exec, std::cbegin(v), std::cend(v));
  217. }
  218. template<class ForwardIterator>
  219. inline auto first_four_moments(ForwardIterator first, ForwardIterator last)
  220. {
  221. return first_four_moments(std::execution::seq, first, last);
  222. }
  223. template<class Container>
  224. inline auto first_four_moments(Container const & v)
  225. {
  226. return first_four_moments(std::execution::seq, std::cbegin(v), std::cend(v));
  227. }
  228. // https://prod.sandia.gov/techlib-noauth/access-control.cgi/2008/086212.pdf
  229. template<class ExecutionPolicy, class ForwardIterator>
  230. inline auto skewness(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last)
  231. {
  232. using Real = typename std::iterator_traits<ForwardIterator>::value_type;
  233. using std::sqrt;
  234. if constexpr (std::is_same_v<std::remove_reference_t<decltype(exec)>, decltype(std::execution::seq)>)
  235. {
  236. if constexpr (std::is_integral_v<Real>)
  237. {
  238. return detail::skewness_sequential_impl<double>(first, last);
  239. }
  240. else
  241. {
  242. return detail::skewness_sequential_impl<Real>(first, last);
  243. }
  244. }
  245. else
  246. {
  247. const auto [M1, M2, M3, M4] = first_four_moments(exec, first, last);
  248. const auto n = std::distance(first, last);
  249. const auto var = M2/(n-1);
  250. if (M2 == 0)
  251. {
  252. // The limit is technically undefined, but the interpretation here is clear:
  253. // A constant dataset has no skewness.
  254. if constexpr (std::is_integral_v<Real>)
  255. {
  256. return static_cast<double>(0);
  257. }
  258. else
  259. {
  260. return Real(0);
  261. }
  262. }
  263. else
  264. {
  265. return M3/(M2*sqrt(var)) / Real(2);
  266. }
  267. }
  268. }
  269. template<class ExecutionPolicy, class Container>
  270. inline auto skewness(ExecutionPolicy&& exec, Container & v)
  271. {
  272. return skewness(exec, std::cbegin(v), std::cend(v));
  273. }
  274. template<class ForwardIterator>
  275. inline auto skewness(ForwardIterator first, ForwardIterator last)
  276. {
  277. return skewness(std::execution::seq, first, last);
  278. }
  279. template<class Container>
  280. inline auto skewness(Container const & v)
  281. {
  282. return skewness(std::execution::seq, std::cbegin(v), std::cend(v));
  283. }
  284. // Follows equation 1.6 of:
  285. // https://prod.sandia.gov/techlib-noauth/access-control.cgi/2008/086212.pdf
  286. template<class ExecutionPolicy, class ForwardIterator>
  287. inline auto kurtosis(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last)
  288. {
  289. const auto [M1, M2, M3, M4] = first_four_moments(exec, first, last);
  290. if (M2 == 0)
  291. {
  292. return M2;
  293. }
  294. return M4/(M2*M2);
  295. }
  296. template<class ExecutionPolicy, class Container>
  297. inline auto kurtosis(ExecutionPolicy&& exec, Container const & v)
  298. {
  299. return kurtosis(exec, std::cbegin(v), std::cend(v));
  300. }
  301. template<class ForwardIterator>
  302. inline auto kurtosis(ForwardIterator first, ForwardIterator last)
  303. {
  304. return kurtosis(std::execution::seq, first, last);
  305. }
  306. template<class Container>
  307. inline auto kurtosis(Container const & v)
  308. {
  309. return kurtosis(std::execution::seq, std::cbegin(v), std::cend(v));
  310. }
  311. template<class ExecutionPolicy, class ForwardIterator>
  312. inline auto excess_kurtosis(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last)
  313. {
  314. return kurtosis(exec, first, last) - 3;
  315. }
  316. template<class ExecutionPolicy, class Container>
  317. inline auto excess_kurtosis(ExecutionPolicy&& exec, Container const & v)
  318. {
  319. return excess_kurtosis(exec, std::cbegin(v), std::cend(v));
  320. }
  321. template<class ForwardIterator>
  322. inline auto excess_kurtosis(ForwardIterator first, ForwardIterator last)
  323. {
  324. return excess_kurtosis(std::execution::seq, first, last);
  325. }
  326. template<class Container>
  327. inline auto excess_kurtosis(Container const & v)
  328. {
  329. return excess_kurtosis(std::execution::seq, std::cbegin(v), std::cend(v));
  330. }
  331. template<class ExecutionPolicy, class RandomAccessIterator>
  332. auto median(ExecutionPolicy&& exec, RandomAccessIterator first, RandomAccessIterator last)
  333. {
  334. const auto num_elems = std::distance(first, last);
  335. BOOST_MATH_ASSERT_MSG(num_elems > 0, "The median of a zero length vector is undefined.");
  336. if (num_elems & 1)
  337. {
  338. auto middle = first + (num_elems - 1)/2;
  339. std::nth_element(exec, first, middle, last);
  340. return *middle;
  341. }
  342. else
  343. {
  344. auto middle = first + num_elems/2 - 1;
  345. std::nth_element(exec, first, middle, last);
  346. std::nth_element(exec, middle, middle+1, last);
  347. return (*middle + *(middle+1))/2;
  348. }
  349. }
  350. template<class ExecutionPolicy, class RandomAccessContainer>
  351. inline auto median(ExecutionPolicy&& exec, RandomAccessContainer & v)
  352. {
  353. return median(exec, std::begin(v), std::end(v));
  354. }
  355. template<class RandomAccessIterator>
  356. inline auto median(RandomAccessIterator first, RandomAccessIterator last)
  357. {
  358. return median(std::execution::seq, first, last);
  359. }
  360. template<class RandomAccessContainer>
  361. inline auto median(RandomAccessContainer & v)
  362. {
  363. return median(std::execution::seq, std::begin(v), std::end(v));
  364. }
  365. #if 0
  366. //
  367. // Parallel gini calculation is curently broken, see:
  368. // https://github.com/boostorg/math/issues/585
  369. // We will fix this at a later date, for now just use a serial implementation:
  370. //
  371. template<class ExecutionPolicy, class RandomAccessIterator>
  372. inline auto gini_coefficient(ExecutionPolicy&& exec, RandomAccessIterator first, RandomAccessIterator last)
  373. {
  374. using Real = typename std::iterator_traits<RandomAccessIterator>::value_type;
  375. if(!std::is_sorted(exec, first, last))
  376. {
  377. std::sort(exec, first, last);
  378. }
  379. if constexpr (std::is_same_v<std::remove_reference_t<decltype(exec)>, decltype(std::execution::seq)>)
  380. {
  381. if constexpr (std::is_integral_v<Real>)
  382. {
  383. return detail::gini_coefficient_sequential_impl<double>(first, last);
  384. }
  385. else
  386. {
  387. return detail::gini_coefficient_sequential_impl<Real>(first, last);
  388. }
  389. }
  390. else if constexpr (std::is_integral_v<Real>)
  391. {
  392. return detail::gini_coefficient_parallel_impl<double>(exec, first, last);
  393. }
  394. else
  395. {
  396. return detail::gini_coefficient_parallel_impl<Real>(exec, first, last);
  397. }
  398. }
  399. #else
  400. template<class ExecutionPolicy, class RandomAccessIterator>
  401. inline auto gini_coefficient(ExecutionPolicy&& exec, RandomAccessIterator first, RandomAccessIterator last)
  402. {
  403. using Real = typename std::iterator_traits<RandomAccessIterator>::value_type;
  404. if (!std::is_sorted(exec, first, last))
  405. {
  406. std::sort(exec, first, last);
  407. }
  408. if constexpr (std::is_integral_v<Real>)
  409. {
  410. return detail::gini_coefficient_sequential_impl<double>(first, last);
  411. }
  412. else
  413. {
  414. return detail::gini_coefficient_sequential_impl<Real>(first, last);
  415. }
  416. }
  417. #endif
  418. template<class ExecutionPolicy, class RandomAccessContainer>
  419. inline auto gini_coefficient(ExecutionPolicy&& exec, RandomAccessContainer & v)
  420. {
  421. return gini_coefficient(exec, std::begin(v), std::end(v));
  422. }
  423. template<class RandomAccessIterator>
  424. inline auto gini_coefficient(RandomAccessIterator first, RandomAccessIterator last)
  425. {
  426. return gini_coefficient(std::execution::seq, first, last);
  427. }
  428. template<class RandomAccessContainer>
  429. inline auto gini_coefficient(RandomAccessContainer & v)
  430. {
  431. return gini_coefficient(std::execution::seq, std::begin(v), std::end(v));
  432. }
  433. template<class ExecutionPolicy, class RandomAccessIterator>
  434. inline auto sample_gini_coefficient(ExecutionPolicy&& exec, RandomAccessIterator first, RandomAccessIterator last)
  435. {
  436. const auto n = std::distance(first, last);
  437. return n*gini_coefficient(exec, first, last)/(n-1);
  438. }
  439. template<class ExecutionPolicy, class RandomAccessContainer>
  440. inline auto sample_gini_coefficient(ExecutionPolicy&& exec, RandomAccessContainer & v)
  441. {
  442. return sample_gini_coefficient(exec, std::begin(v), std::end(v));
  443. }
  444. template<class RandomAccessIterator>
  445. inline auto sample_gini_coefficient(RandomAccessIterator first, RandomAccessIterator last)
  446. {
  447. return sample_gini_coefficient(std::execution::seq, first, last);
  448. }
  449. template<class RandomAccessContainer>
  450. inline auto sample_gini_coefficient(RandomAccessContainer & v)
  451. {
  452. return sample_gini_coefficient(std::execution::seq, std::begin(v), std::end(v));
  453. }
  454. template<class ExecutionPolicy, class RandomAccessIterator>
  455. auto median_absolute_deviation(ExecutionPolicy&& exec, RandomAccessIterator first, RandomAccessIterator last,
  456. typename std::iterator_traits<RandomAccessIterator>::value_type center=std::numeric_limits<typename std::iterator_traits<RandomAccessIterator>::value_type>::quiet_NaN())
  457. {
  458. using std::abs;
  459. using Real = typename std::iterator_traits<RandomAccessIterator>::value_type;
  460. using std::isnan;
  461. if (isnan(center))
  462. {
  463. center = boost::math::statistics::median(exec, first, last);
  464. }
  465. const auto num_elems = std::distance(first, last);
  466. BOOST_MATH_ASSERT_MSG(num_elems > 0, "The median of a zero-length vector is undefined.");
  467. auto comparator = [&center](Real a, Real b) { return abs(a-center) < abs(b-center);};
  468. if (num_elems & 1)
  469. {
  470. auto middle = first + (num_elems - 1)/2;
  471. std::nth_element(exec, first, middle, last, comparator);
  472. return abs(*middle-center);
  473. }
  474. else
  475. {
  476. auto middle = first + num_elems/2 - 1;
  477. std::nth_element(exec, first, middle, last, comparator);
  478. std::nth_element(exec, middle, middle+1, last, comparator);
  479. return (abs(*middle-center) + abs(*(middle+1)-center))/abs(static_cast<Real>(2));
  480. }
  481. }
  482. template<class ExecutionPolicy, class RandomAccessContainer>
  483. inline auto median_absolute_deviation(ExecutionPolicy&& exec, RandomAccessContainer & v,
  484. typename RandomAccessContainer::value_type center=std::numeric_limits<typename RandomAccessContainer::value_type>::quiet_NaN())
  485. {
  486. return median_absolute_deviation(exec, std::begin(v), std::end(v), center);
  487. }
  488. template<class RandomAccessIterator>
  489. inline auto median_absolute_deviation(RandomAccessIterator first, RandomAccessIterator last,
  490. typename RandomAccessIterator::value_type center=std::numeric_limits<typename RandomAccessIterator::value_type>::quiet_NaN())
  491. {
  492. return median_absolute_deviation(std::execution::seq, first, last, center);
  493. }
  494. template<class RandomAccessContainer>
  495. inline auto median_absolute_deviation(RandomAccessContainer & v,
  496. typename RandomAccessContainer::value_type center=std::numeric_limits<typename RandomAccessContainer::value_type>::quiet_NaN())
  497. {
  498. return median_absolute_deviation(std::execution::seq, std::begin(v), std::end(v), center);
  499. }
  500. template<class ExecutionPolicy, class ForwardIterator>
  501. auto interquartile_range(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last)
  502. {
  503. using Real = typename std::iterator_traits<ForwardIterator>::value_type;
  504. static_assert(!std::is_integral_v<Real>, "Integer values have not yet been implemented.");
  505. auto m = std::distance(first,last);
  506. BOOST_MATH_ASSERT_MSG(m >= 3, "At least 3 samples are required to compute the interquartile range.");
  507. auto k = m/4;
  508. auto j = m - (4*k);
  509. // m = 4k+j.
  510. // If j = 0 or j = 1, then there are an even number of samples below the median, and an even number above the median.
  511. // Then we must average adjacent elements to get the quartiles.
  512. // If j = 2 or j = 3, there are an odd number of samples above and below the median, these elements may be directly extracted to get the quartiles.
  513. if (j==2 || j==3)
  514. {
  515. auto q1 = first + k;
  516. auto q3 = first + 3*k + j - 1;
  517. std::nth_element(exec, first, q1, last);
  518. Real Q1 = *q1;
  519. std::nth_element(exec, q1, q3, last);
  520. Real Q3 = *q3;
  521. return Q3 - Q1;
  522. } else {
  523. // j == 0 or j==1:
  524. auto q1 = first + k - 1;
  525. auto q3 = first + 3*k - 1 + j;
  526. std::nth_element(exec, first, q1, last);
  527. Real a = *q1;
  528. std::nth_element(exec, q1, q1 + 1, last);
  529. Real b = *(q1 + 1);
  530. Real Q1 = (a+b)/2;
  531. std::nth_element(exec, q1, q3, last);
  532. a = *q3;
  533. std::nth_element(exec, q3, q3 + 1, last);
  534. b = *(q3 + 1);
  535. Real Q3 = (a+b)/2;
  536. return Q3 - Q1;
  537. }
  538. }
  539. template<class ExecutionPolicy, class RandomAccessContainer>
  540. inline auto interquartile_range(ExecutionPolicy&& exec, RandomAccessContainer & v)
  541. {
  542. return interquartile_range(exec, std::begin(v), std::end(v));
  543. }
  544. template<class RandomAccessIterator>
  545. inline auto interquartile_range(RandomAccessIterator first, RandomAccessIterator last)
  546. {
  547. return interquartile_range(std::execution::seq, first, last);
  548. }
  549. template<class RandomAccessContainer>
  550. inline auto interquartile_range(RandomAccessContainer & v)
  551. {
  552. return interquartile_range(std::execution::seq, std::begin(v), std::end(v));
  553. }
  554. template<class ExecutionPolicy, class ForwardIterator, class OutputIterator>
  555. inline OutputIterator mode(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last, OutputIterator output)
  556. {
  557. if(!std::is_sorted(exec, first, last))
  558. {
  559. if constexpr (std::is_same_v<typename std::iterator_traits<ForwardIterator>::iterator_category(), std::random_access_iterator_tag>)
  560. {
  561. std::sort(exec, first, last);
  562. }
  563. else
  564. {
  565. BOOST_MATH_ASSERT("Data must be sorted for sequential mode calculation");
  566. }
  567. }
  568. return detail::mode_impl(first, last, output);
  569. }
  570. template<class ExecutionPolicy, class Container, class OutputIterator>
  571. inline OutputIterator mode(ExecutionPolicy&& exec, Container & v, OutputIterator output)
  572. {
  573. return mode(exec, std::begin(v), std::end(v), output);
  574. }
  575. template<class ForwardIterator, class OutputIterator>
  576. inline OutputIterator mode(ForwardIterator first, ForwardIterator last, OutputIterator output)
  577. {
  578. return mode(std::execution::seq, first, last, output);
  579. }
  580. // Requires enable_if_t to not clash with impl that returns std::list
  581. // Very ugly. std::is_execution_policy_v returns false for the std::execution objects and decltype of the objects (e.g. std::execution::seq)
  582. template<class Container, class OutputIterator, std::enable_if_t<!std::is_convertible_v<std::execution::sequenced_policy, Container> &&
  583. !std::is_convertible_v<std::execution::parallel_unsequenced_policy, Container> &&
  584. !std::is_convertible_v<std::execution::parallel_policy, Container>
  585. #if __cpp_lib_execution > 201900
  586. && !std::is_convertible_v<std::execution::unsequenced_policy, Container>
  587. #endif
  588. , bool> = true>
  589. inline OutputIterator mode(Container & v, OutputIterator output)
  590. {
  591. return mode(std::execution::seq, std::begin(v), std::end(v), output);
  592. }
  593. // std::list is the return type for the proposed STL stats library
  594. template<class ExecutionPolicy, class ForwardIterator, class Real = typename std::iterator_traits<ForwardIterator>::value_type>
  595. inline auto mode(ExecutionPolicy&& exec, ForwardIterator first, ForwardIterator last)
  596. {
  597. std::list<Real> modes;
  598. mode(exec, first, last, std::inserter(modes, modes.begin()));
  599. return modes;
  600. }
  601. template<class ExecutionPolicy, class Container>
  602. inline auto mode(ExecutionPolicy&& exec, Container & v)
  603. {
  604. return mode(exec, std::begin(v), std::end(v));
  605. }
  606. template<class ForwardIterator>
  607. inline auto mode(ForwardIterator first, ForwardIterator last)
  608. {
  609. return mode(std::execution::seq, first, last);
  610. }
  611. template<class Container>
  612. inline auto mode(Container & v)
  613. {
  614. return mode(std::execution::seq, std::begin(v), std::end(v));
  615. }
  616. } // Namespace boost::math::statistics
  617. #else // Backwards compatible bindings for C++11 or execution is not implemented
  618. namespace boost { namespace math { namespace statistics {
  619. template<bool B, class T = void>
  620. using enable_if_t = typename std::enable_if<B, T>::type;
  621. template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
  622. enable_if_t<std::is_integral<Real>::value, bool> = true>
  623. inline double mean(const ForwardIterator first, const ForwardIterator last)
  624. {
  625. BOOST_MATH_ASSERT_MSG(first != last, "At least one sample is required to compute the mean.");
  626. return detail::mean_sequential_impl<double>(first, last);
  627. }
  628. template<class Container, typename Real = typename Container::value_type,
  629. enable_if_t<std::is_integral<Real>::value, bool> = true>
  630. inline double mean(const Container& c)
  631. {
  632. return mean(std::begin(c), std::end(c));
  633. }
  634. template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
  635. enable_if_t<!std::is_integral<Real>::value, bool> = true>
  636. inline Real mean(const ForwardIterator first, const ForwardIterator last)
  637. {
  638. BOOST_MATH_ASSERT_MSG(first != last, "At least one sample is required to compute the mean.");
  639. return detail::mean_sequential_impl<Real>(first, last);
  640. }
  641. template<class Container, typename Real = typename Container::value_type,
  642. enable_if_t<!std::is_integral<Real>::value, bool> = true>
  643. inline Real mean(const Container& c)
  644. {
  645. return mean(std::begin(c), std::end(c));
  646. }
  647. template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
  648. enable_if_t<std::is_integral<Real>::value, bool> = true>
  649. inline double variance(const ForwardIterator first, const ForwardIterator last)
  650. {
  651. return std::get<2>(detail::variance_sequential_impl<std::tuple<double, double, double, double>>(first, last));
  652. }
  653. template<class Container, typename Real = typename Container::value_type,
  654. enable_if_t<std::is_integral<Real>::value, bool> = true>
  655. inline double variance(const Container& c)
  656. {
  657. return variance(std::begin(c), std::end(c));
  658. }
  659. template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
  660. enable_if_t<!std::is_integral<Real>::value, bool> = true>
  661. inline Real variance(const ForwardIterator first, const ForwardIterator last)
  662. {
  663. return std::get<2>(detail::variance_sequential_impl<std::tuple<Real, Real, Real, Real>>(first, last));
  664. }
  665. template<class Container, typename Real = typename Container::value_type,
  666. enable_if_t<!std::is_integral<Real>::value, bool> = true>
  667. inline Real variance(const Container& c)
  668. {
  669. return variance(std::begin(c), std::end(c));
  670. }
  671. template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
  672. enable_if_t<std::is_integral<Real>::value, bool> = true>
  673. inline double sample_variance(const ForwardIterator first, const ForwardIterator last)
  674. {
  675. const auto n = std::distance(first, last);
  676. BOOST_MATH_ASSERT_MSG(n > 1, "At least two samples are required to compute the sample variance.");
  677. return n*variance(first, last)/(n-1);
  678. }
  679. template<class Container, typename Real = typename Container::value_type,
  680. enable_if_t<std::is_integral<Real>::value, bool> = true>
  681. inline double sample_variance(const Container& c)
  682. {
  683. return sample_variance(std::begin(c), std::end(c));
  684. }
  685. template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
  686. enable_if_t<!std::is_integral<Real>::value, bool> = true>
  687. inline Real sample_variance(const ForwardIterator first, const ForwardIterator last)
  688. {
  689. const auto n = std::distance(first, last);
  690. BOOST_MATH_ASSERT_MSG(n > 1, "At least two samples are required to compute the sample variance.");
  691. return n*variance(first, last)/(n-1);
  692. }
  693. template<class Container, typename Real = typename Container::value_type,
  694. enable_if_t<!std::is_integral<Real>::value, bool> = true>
  695. inline Real sample_variance(const Container& c)
  696. {
  697. return sample_variance(std::begin(c), std::end(c));
  698. }
  699. template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
  700. enable_if_t<std::is_integral<Real>::value, bool> = true>
  701. inline std::pair<double, double> mean_and_sample_variance(const ForwardIterator first, const ForwardIterator last)
  702. {
  703. const auto results = detail::variance_sequential_impl<std::tuple<double, double, double, double>>(first, last);
  704. return std::make_pair(std::get<0>(results), std::get<3>(results)*std::get<2>(results)/(std::get<3>(results)-1.0));
  705. }
  706. template<class Container, typename Real = typename Container::value_type,
  707. enable_if_t<std::is_integral<Real>::value, bool> = true>
  708. inline std::pair<double, double> mean_and_sample_variance(const Container& c)
  709. {
  710. return mean_and_sample_variance(std::begin(c), std::end(c));
  711. }
  712. template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
  713. enable_if_t<!std::is_integral<Real>::value, bool> = true>
  714. inline std::pair<Real, Real> mean_and_sample_variance(const ForwardIterator first, const ForwardIterator last)
  715. {
  716. const auto results = detail::variance_sequential_impl<std::tuple<Real, Real, Real, Real>>(first, last);
  717. return std::make_pair(std::get<0>(results), std::get<3>(results)*std::get<2>(results)/(std::get<3>(results)-Real(1)));
  718. }
  719. template<class Container, typename Real = typename Container::value_type,
  720. enable_if_t<!std::is_integral<Real>::value, bool> = true>
  721. inline std::pair<Real, Real> mean_and_sample_variance(const Container& c)
  722. {
  723. return mean_and_sample_variance(std::begin(c), std::end(c));
  724. }
  725. template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
  726. enable_if_t<std::is_integral<Real>::value, bool> = true>
  727. inline std::tuple<double, double, double, double> first_four_moments(const ForwardIterator first, const ForwardIterator last)
  728. {
  729. const auto results = detail::first_four_moments_sequential_impl<std::tuple<double, double, double, double, double>>(first, last);
  730. return std::make_tuple(std::get<0>(results), std::get<1>(results) / std::get<4>(results), std::get<2>(results) / std::get<4>(results),
  731. std::get<3>(results) / std::get<4>(results));
  732. }
  733. template<class Container, typename Real = typename Container::value_type,
  734. enable_if_t<std::is_integral<Real>::value, bool> = true>
  735. inline std::tuple<double, double, double, double> first_four_moments(const Container& c)
  736. {
  737. return first_four_moments(std::begin(c), std::end(c));
  738. }
  739. template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
  740. enable_if_t<!std::is_integral<Real>::value, bool> = true>
  741. inline std::tuple<Real, Real, Real, Real> first_four_moments(const ForwardIterator first, const ForwardIterator last)
  742. {
  743. const auto results = detail::first_four_moments_sequential_impl<std::tuple<Real, Real, Real, Real, Real>>(first, last);
  744. return std::make_tuple(std::get<0>(results), std::get<1>(results) / std::get<4>(results), std::get<2>(results) / std::get<4>(results),
  745. std::get<3>(results) / std::get<4>(results));
  746. }
  747. template<class Container, typename Real = typename Container::value_type,
  748. enable_if_t<!std::is_integral<Real>::value, bool> = true>
  749. inline std::tuple<Real, Real, Real, Real> first_four_moments(const Container& c)
  750. {
  751. return first_four_moments(std::begin(c), std::end(c));
  752. }
  753. template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
  754. enable_if_t<std::is_integral<Real>::value, bool> = true>
  755. inline double skewness(const ForwardIterator first, const ForwardIterator last)
  756. {
  757. return detail::skewness_sequential_impl<double>(first, last);
  758. }
  759. template<class Container, typename Real = typename Container::value_type,
  760. enable_if_t<std::is_integral<Real>::value, bool> = true>
  761. inline double skewness(const Container& c)
  762. {
  763. return skewness(std::begin(c), std::end(c));
  764. }
  765. template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
  766. enable_if_t<!std::is_integral<Real>::value, bool> = true>
  767. inline Real skewness(const ForwardIterator first, const ForwardIterator last)
  768. {
  769. return detail::skewness_sequential_impl<Real>(first, last);
  770. }
  771. template<class Container, typename Real = typename Container::value_type,
  772. enable_if_t<!std::is_integral<Real>::value, bool> = true>
  773. inline Real skewness(const Container& c)
  774. {
  775. return skewness(std::begin(c), std::end(c));
  776. }
  777. template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
  778. enable_if_t<std::is_integral<Real>::value, bool> = true>
  779. inline double kurtosis(const ForwardIterator first, const ForwardIterator last)
  780. {
  781. std::tuple<double, double, double, double> M = first_four_moments(first, last);
  782. if(std::get<1>(M) == 0)
  783. {
  784. return std::get<1>(M);
  785. }
  786. else
  787. {
  788. return std::get<3>(M)/(std::get<1>(M)*std::get<1>(M));
  789. }
  790. }
  791. template<class Container, typename Real = typename Container::value_type,
  792. enable_if_t<std::is_integral<Real>::value, bool> = true>
  793. inline double kurtosis(const Container& c)
  794. {
  795. return kurtosis(std::begin(c), std::end(c));
  796. }
  797. template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
  798. enable_if_t<!std::is_integral<Real>::value, bool> = true>
  799. inline Real kurtosis(const ForwardIterator first, const ForwardIterator last)
  800. {
  801. std::tuple<Real, Real, Real, Real> M = first_four_moments(first, last);
  802. if(std::get<1>(M) == 0)
  803. {
  804. return std::get<1>(M);
  805. }
  806. else
  807. {
  808. return std::get<3>(M)/(std::get<1>(M)*std::get<1>(M));
  809. }
  810. }
  811. template<class Container, typename Real = typename Container::value_type,
  812. enable_if_t<!std::is_integral<Real>::value, bool> = true>
  813. inline Real kurtosis(const Container& c)
  814. {
  815. return kurtosis(std::begin(c), std::end(c));
  816. }
  817. template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
  818. enable_if_t<std::is_integral<Real>::value, bool> = true>
  819. inline double excess_kurtosis(const ForwardIterator first, const ForwardIterator last)
  820. {
  821. return kurtosis(first, last) - 3;
  822. }
  823. template<class Container, typename Real = typename Container::value_type,
  824. enable_if_t<std::is_integral<Real>::value, bool> = true>
  825. inline double excess_kurtosis(const Container& c)
  826. {
  827. return excess_kurtosis(std::begin(c), std::end(c));
  828. }
  829. template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type,
  830. enable_if_t<!std::is_integral<Real>::value, bool> = true>
  831. inline Real excess_kurtosis(const ForwardIterator first, const ForwardIterator last)
  832. {
  833. return kurtosis(first, last) - 3;
  834. }
  835. template<class Container, typename Real = typename Container::value_type,
  836. enable_if_t<!std::is_integral<Real>::value, bool> = true>
  837. inline Real excess_kurtosis(const Container& c)
  838. {
  839. return excess_kurtosis(std::begin(c), std::end(c));
  840. }
  841. template<class RandomAccessIterator, typename Real = typename std::iterator_traits<RandomAccessIterator>::value_type>
  842. Real median(RandomAccessIterator first, RandomAccessIterator last)
  843. {
  844. const auto num_elems = std::distance(first, last);
  845. BOOST_MATH_ASSERT_MSG(num_elems > 0, "The median of a zero length vector is undefined.");
  846. if (num_elems & 1)
  847. {
  848. auto middle = first + (num_elems - 1)/2;
  849. std::nth_element(first, middle, last);
  850. return *middle;
  851. }
  852. else
  853. {
  854. auto middle = first + num_elems/2 - 1;
  855. std::nth_element(first, middle, last);
  856. std::nth_element(middle, middle+1, last);
  857. return (*middle + *(middle+1))/2;
  858. }
  859. }
  860. template<class RandomAccessContainer, typename Real = typename RandomAccessContainer::value_type>
  861. inline Real median(RandomAccessContainer& c)
  862. {
  863. return median(std::begin(c), std::end(c));
  864. }
  865. template<class RandomAccessIterator, typename Real = typename std::iterator_traits<RandomAccessIterator>::value_type,
  866. enable_if_t<std::is_integral<Real>::value, bool> = true>
  867. inline double gini_coefficient(RandomAccessIterator first, RandomAccessIterator last)
  868. {
  869. if(!std::is_sorted(first, last))
  870. {
  871. std::sort(first, last);
  872. }
  873. return detail::gini_coefficient_sequential_impl<double>(first, last);
  874. }
  875. template<class RandomAccessContainer, typename Real = typename RandomAccessContainer::value_type,
  876. enable_if_t<std::is_integral<Real>::value, bool> = true>
  877. inline double gini_coefficient(RandomAccessContainer& c)
  878. {
  879. return gini_coefficient(std::begin(c), std::end(c));
  880. }
  881. template<class RandomAccessIterator, typename Real = typename std::iterator_traits<RandomAccessIterator>::value_type,
  882. enable_if_t<!std::is_integral<Real>::value, bool> = true>
  883. inline Real gini_coefficient(RandomAccessIterator first, RandomAccessIterator last)
  884. {
  885. if(!std::is_sorted(first, last))
  886. {
  887. std::sort(first, last);
  888. }
  889. return detail::gini_coefficient_sequential_impl<Real>(first, last);
  890. }
  891. template<class RandomAccessContainer, typename Real = typename RandomAccessContainer::value_type,
  892. enable_if_t<!std::is_integral<Real>::value, bool> = true>
  893. inline Real gini_coefficient(RandomAccessContainer& c)
  894. {
  895. return gini_coefficient(std::begin(c), std::end(c));
  896. }
  897. template<class RandomAccessIterator, typename Real = typename std::iterator_traits<RandomAccessIterator>::value_type,
  898. enable_if_t<std::is_integral<Real>::value, bool> = true>
  899. inline double sample_gini_coefficient(RandomAccessIterator first, RandomAccessIterator last)
  900. {
  901. const auto n = std::distance(first, last);
  902. return n*gini_coefficient(first, last)/(n-1);
  903. }
  904. template<class RandomAccessContainer, typename Real = typename RandomAccessContainer::value_type,
  905. enable_if_t<std::is_integral<Real>::value, bool> = true>
  906. inline double sample_gini_coefficient(RandomAccessContainer& c)
  907. {
  908. return sample_gini_coefficient(std::begin(c), std::end(c));
  909. }
  910. template<class RandomAccessIterator, typename Real = typename std::iterator_traits<RandomAccessIterator>::value_type,
  911. enable_if_t<!std::is_integral<Real>::value, bool> = true>
  912. inline Real sample_gini_coefficient(RandomAccessIterator first, RandomAccessIterator last)
  913. {
  914. const auto n = std::distance(first, last);
  915. return n*gini_coefficient(first, last)/(n-1);
  916. }
  917. template<class RandomAccessContainer, typename Real = typename RandomAccessContainer::value_type,
  918. enable_if_t<!std::is_integral<Real>::value, bool> = true>
  919. inline Real sample_gini_coefficient(RandomAccessContainer& c)
  920. {
  921. return sample_gini_coefficient(std::begin(c), std::end(c));
  922. }
  923. template<class RandomAccessIterator, typename Real = typename std::iterator_traits<RandomAccessIterator>::value_type>
  924. Real median_absolute_deviation(RandomAccessIterator first, RandomAccessIterator last,
  925. typename std::iterator_traits<RandomAccessIterator>::value_type center=std::numeric_limits<typename std::iterator_traits<RandomAccessIterator>::value_type>::quiet_NaN())
  926. {
  927. using std::abs;
  928. using std::isnan;
  929. if (isnan(center))
  930. {
  931. center = boost::math::statistics::median(first, last);
  932. }
  933. const auto num_elems = std::distance(first, last);
  934. BOOST_MATH_ASSERT_MSG(num_elems > 0, "The median of a zero-length vector is undefined.");
  935. auto comparator = [&center](Real a, Real b) { return abs(a-center) < abs(b-center);};
  936. if (num_elems & 1)
  937. {
  938. auto middle = first + (num_elems - 1)/2;
  939. std::nth_element(first, middle, last, comparator);
  940. return abs(*middle-center);
  941. }
  942. else
  943. {
  944. auto middle = first + num_elems/2 - 1;
  945. std::nth_element(first, middle, last, comparator);
  946. std::nth_element(middle, middle+1, last, comparator);
  947. return (abs(*middle-center) + abs(*(middle+1)-center))/abs(static_cast<Real>(2));
  948. }
  949. }
  950. template<class RandomAccessContainer, typename Real = typename RandomAccessContainer::value_type>
  951. inline Real median_absolute_deviation(RandomAccessContainer& c,
  952. typename RandomAccessContainer::value_type center=std::numeric_limits<typename RandomAccessContainer::value_type>::quiet_NaN())
  953. {
  954. return median_absolute_deviation(std::begin(c), std::end(c), center);
  955. }
  956. template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type>
  957. Real interquartile_range(ForwardIterator first, ForwardIterator last)
  958. {
  959. static_assert(!std::is_integral<Real>::value, "Integer values have not yet been implemented.");
  960. auto m = std::distance(first,last);
  961. BOOST_MATH_ASSERT_MSG(m >= 3, "At least 3 samples are required to compute the interquartile range.");
  962. auto k = m/4;
  963. auto j = m - (4*k);
  964. // m = 4k+j.
  965. // If j = 0 or j = 1, then there are an even number of samples below the median, and an even number above the median.
  966. // Then we must average adjacent elements to get the quartiles.
  967. // If j = 2 or j = 3, there are an odd number of samples above and below the median, these elements may be directly extracted to get the quartiles.
  968. if (j==2 || j==3)
  969. {
  970. auto q1 = first + k;
  971. auto q3 = first + 3*k + j - 1;
  972. std::nth_element(first, q1, last);
  973. Real Q1 = *q1;
  974. std::nth_element(q1, q3, last);
  975. Real Q3 = *q3;
  976. return Q3 - Q1;
  977. }
  978. else
  979. {
  980. // j == 0 or j==1:
  981. auto q1 = first + k - 1;
  982. auto q3 = first + 3*k - 1 + j;
  983. std::nth_element(first, q1, last);
  984. Real a = *q1;
  985. std::nth_element(q1, q1 + 1, last);
  986. Real b = *(q1 + 1);
  987. Real Q1 = (a+b)/2;
  988. std::nth_element(q1, q3, last);
  989. a = *q3;
  990. std::nth_element(q3, q3 + 1, last);
  991. b = *(q3 + 1);
  992. Real Q3 = (a+b)/2;
  993. return Q3 - Q1;
  994. }
  995. }
  996. template<class Container, typename Real = typename Container::value_type>
  997. Real interquartile_range(Container& c)
  998. {
  999. return interquartile_range(std::begin(c), std::end(c));
  1000. }
  1001. template<class ForwardIterator, class OutputIterator,
  1002. enable_if_t<std::is_same<typename std::iterator_traits<ForwardIterator>::iterator_category(), std::random_access_iterator_tag>::value, bool> = true>
  1003. inline OutputIterator mode(ForwardIterator first, ForwardIterator last, OutputIterator output)
  1004. {
  1005. if(!std::is_sorted(first, last))
  1006. {
  1007. std::sort(first, last);
  1008. }
  1009. return detail::mode_impl(first, last, output);
  1010. }
  1011. template<class ForwardIterator, class OutputIterator,
  1012. enable_if_t<!std::is_same<typename std::iterator_traits<ForwardIterator>::iterator_category(), std::random_access_iterator_tag>::value, bool> = true>
  1013. inline OutputIterator mode(ForwardIterator first, ForwardIterator last, OutputIterator output)
  1014. {
  1015. if(!std::is_sorted(first, last))
  1016. {
  1017. BOOST_MATH_ASSERT("Data must be sorted for mode calculation");
  1018. }
  1019. return detail::mode_impl(first, last, output);
  1020. }
  1021. template<class Container, class OutputIterator>
  1022. inline OutputIterator mode(Container& c, OutputIterator output)
  1023. {
  1024. return mode(std::begin(c), std::end(c), output);
  1025. }
  1026. template<class ForwardIterator, typename Real = typename std::iterator_traits<ForwardIterator>::value_type>
  1027. inline std::list<Real> mode(ForwardIterator first, ForwardIterator last)
  1028. {
  1029. std::list<Real> modes;
  1030. mode(first, last, std::inserter(modes, modes.begin()));
  1031. return modes;
  1032. }
  1033. template<class Container, typename Real = typename Container::value_type>
  1034. inline std::list<Real> mode(Container& c)
  1035. {
  1036. return mode(std::begin(c), std::end(c));
  1037. }
  1038. }}}
  1039. #endif
  1040. #endif // BOOST_MATH_STATISTICS_UNIVARIATE_STATISTICS_HPP