123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- // Copyright Nick Thompson, 2017
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0.
- // (See accompanying file LICENSE_1_0.txt
- // or copy at http://www.boost.org/LICENSE_1_0.txt)
- // This implements the compactly supported cubic b spline algorithm described in
- // Kress, Rainer. "Numerical analysis, volume 181 of Graduate Texts in Mathematics." (1998).
- // Splines of compact support are faster to evaluate and are better conditioned than classical cubic splines.
- // Let f be the function we are trying to interpolate, and s be the interpolating spline.
- // The routine constructs the interpolant in O(N) time, and evaluating s at a point takes constant time.
- // The order of accuracy depends on the regularity of the f, however, assuming f is
- // four-times continuously differentiable, the error is of O(h^4).
- // In addition, we can differentiate the spline and obtain a good interpolant for f'.
- // The main restriction of this method is that the samples of f must be evenly spaced.
- // Look for barycentric rational interpolation for non-evenly sampled data.
- // Properties:
- // - s(x_j) = f(x_j)
- // - All cubic polynomials interpolated exactly
- #ifndef BOOST_MATH_INTERPOLATORS_CUBIC_B_SPLINE_HPP
- #define BOOST_MATH_INTERPOLATORS_CUBIC_B_SPLINE_HPP
- #include <boost/math/interpolators/detail/cubic_b_spline_detail.hpp>
- #include <boost/math/tools/header_deprecated.hpp>
- BOOST_MATH_HEADER_DEPRECATED("<boost/math/interpolators/cardinal_cubic_b_spline.hpp>");
- namespace boost{ namespace math{
- template <class Real>
- class cubic_b_spline
- {
- public:
- // If you don't know the value of the derivative at the endpoints, leave them as nans and the routine will estimate them.
- // f[0] = f(a), f[length -1] = b, step_size = (b - a)/(length -1).
- template <class BidiIterator>
- cubic_b_spline(const BidiIterator f, BidiIterator end_p, Real left_endpoint, Real step_size,
- Real left_endpoint_derivative = std::numeric_limits<Real>::quiet_NaN(),
- Real right_endpoint_derivative = std::numeric_limits<Real>::quiet_NaN());
- cubic_b_spline(const Real* const f, size_t length, Real left_endpoint, Real step_size,
- Real left_endpoint_derivative = std::numeric_limits<Real>::quiet_NaN(),
- Real right_endpoint_derivative = std::numeric_limits<Real>::quiet_NaN());
- cubic_b_spline() = default;
- Real operator()(Real x) const;
- Real prime(Real x) const;
- Real double_prime(Real x) const;
- private:
- std::shared_ptr<detail::cubic_b_spline_imp<Real>> m_imp;
- };
- template<class Real>
- cubic_b_spline<Real>::cubic_b_spline(const Real* const f, size_t length, Real left_endpoint, Real step_size,
- Real left_endpoint_derivative, Real right_endpoint_derivative) : m_imp(std::make_shared<detail::cubic_b_spline_imp<Real>>(f, f + length, left_endpoint, step_size, left_endpoint_derivative, right_endpoint_derivative))
- {
- }
- template <class Real>
- template <class BidiIterator>
- cubic_b_spline<Real>::cubic_b_spline(BidiIterator f, BidiIterator end_p, Real left_endpoint, Real step_size,
- Real left_endpoint_derivative, Real right_endpoint_derivative) : m_imp(std::make_shared<detail::cubic_b_spline_imp<Real>>(f, end_p, left_endpoint, step_size, left_endpoint_derivative, right_endpoint_derivative))
- {
- }
- template<class Real>
- Real cubic_b_spline<Real>::operator()(Real x) const
- {
- return m_imp->operator()(x);
- }
- template<class Real>
- Real cubic_b_spline<Real>::prime(Real x) const
- {
- return m_imp->prime(x);
- }
- template<class Real>
- Real cubic_b_spline<Real>::double_prime(Real x) const
- {
- return m_imp->double_prime(x);
- }
- }}
- #endif
|