123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778 |
- // Copyright 2022 Jay Gohil, Hans Dembinski
- //
- // Distributed under the Boost Software License, version 1.0.
- // (See accompanying file LICENSE_1_0.txt
- // or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_HISTOGRAM_UTILITY_JEFFREYS_INTERVAL_HPP
- #define BOOST_HISTOGRAM_UTILITY_JEFFREYS_INTERVAL_HPP
- #include <boost/histogram/fwd.hpp>
- #include <boost/histogram/utility/binomial_proportion_interval.hpp>
- #include <boost/math/distributions/beta.hpp>
- #include <cmath>
- namespace boost {
- namespace histogram {
- namespace utility {
- /**
- Jeffreys interval.
- This is the Bayesian credible interval with a Jeffreys prior. Although it has a
- Bayesian derivation, it has good coverage. The interval boundaries are close to the
- Wilson interval. A special property of this interval is that it is equal-tailed; the
- probability of the true value to be above or below the interval is approximately equal.
- To avoid coverage probability tending to zero when the fraction approaches 0 or 1,
- this implementation uses a modification described in section 4.1.2 of the
- paper by L.D. Brown, T.T. Cai, A. DasGupta, Statistical Science 16 (2001) 101-133,
- doi:10.1214/ss/1009213286.
- */
- template <class ValueType>
- class jeffreys_interval : public binomial_proportion_interval<ValueType> {
- public:
- using value_type = typename jeffreys_interval::value_type;
- using interval_type = typename jeffreys_interval::interval_type;
- /** Construct Jeffreys interval computer.
- @param cl Confidence level for the interval. The default value produces a
- confidence level of 68 % equivalent to one standard deviation. Both `deviation` and
- `confidence_level` objects can be used to initialize the interval.
- */
- explicit jeffreys_interval(confidence_level cl = deviation{1}) noexcept
- : alpha_half_{static_cast<value_type>(0.5 - 0.5 * static_cast<double>(cl))} {}
- using binomial_proportion_interval<ValueType>::operator();
- /** Compute interval for given number of successes and failures.
- @param successes Number of successful trials.
- @param failures Number of failed trials.
- */
- interval_type operator()(value_type successes, value_type failures) const noexcept {
- // See L.D. Brown, T.T. Cai, A. DasGupta, Statistical Science 16 (2001) 101-133,
- // doi:10.1214/ss/1009213286, section 4.1.2.
- const value_type half{0.5};
- const value_type total = successes + failures;
- // if successes or failures are 0, modified interval is equal to Clopper-Pearson
- if (successes == 0) return {0, 1 - std::pow(alpha_half_, 1 / total)};
- if (failures == 0) return {std::pow(alpha_half_, 1 / total), 1};
- math::beta_distribution<value_type> beta(successes + half, failures + half);
- const value_type a = successes == 1 ? 0 : math::quantile(beta, alpha_half_);
- const value_type b = failures == 1 ? 1 : math::quantile(beta, 1 - alpha_half_);
- return {a, b};
- }
- private:
- value_type alpha_half_;
- };
- } // namespace utility
- } // namespace histogram
- } // namespace boost
- #endif
|