1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 |
- // Copyright 2022 Jay Gohil, Hans Dembinski
- //
- // Distributed under the Boost Software License, version 1.0.
- // (See accompanying file LICENSE_1_0.txt
- // or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_HISTOGRAM_UTILITY_CLOPPER_PEARSON_INTERVAL_HPP
- #define BOOST_HISTOGRAM_UTILITY_CLOPPER_PEARSON_INTERVAL_HPP
- #include <boost/histogram/fwd.hpp>
- #include <boost/histogram/utility/binomial_proportion_interval.hpp>
- #include <boost/math/distributions/beta.hpp>
- #include <cmath>
- namespace boost {
- namespace histogram {
- namespace utility {
- /**
- Clopper-Pearson interval.
- This is the classic frequentist interval obtained with the Neyman construction.
- It is therefore often called the 'exact' interval. It is guaranteed to have at least the
- requested confidence level for all values of the fraction.
- The interval is wider than others that produce coverage closer to the expected
- confidence level over a random ensemble of factions. The Clopper-Pearson interval
- essentially always overcovers for such a random ensemble, which is undesirable in
- practice. The Clopper-Pearson interval is recommended when it is important to be
- conservative, but the Wilson interval should be preferred in most applications.
- C. Clopper, E.S. Pearson (1934), Biometrika 26 (4): 404-413.
- doi:10.1093/biomet/26.4.404.
- */
- template <class ValueType>
- class clopper_pearson_interval : public binomial_proportion_interval<ValueType> {
- public:
- using value_type = typename clopper_pearson_interval::value_type;
- using interval_type = typename clopper_pearson_interval::interval_type;
- /** Construct Clopper-Pearson interval computer.
- @param cl Confidence level for the interval. The default value produces a
- confidence level of 68 % equivalent to one standard deviation. Both `deviation` and
- `confidence_level` objects can be used to initialize the interval.
- */
- explicit clopper_pearson_interval(confidence_level cl = deviation{1}) noexcept
- : alpha_half_{static_cast<value_type>(0.5 - 0.5 * static_cast<double>(cl))} {}
- using binomial_proportion_interval<ValueType>::operator();
- /** Compute interval for given number of successes and failures.
- @param successes Number of successful trials.
- @param failures Number of failed trials.
- */
- interval_type operator()(value_type successes, value_type failures) const noexcept {
- // analytical solution when successes or failures are zero
- // T. Mans (2014), Electronic Journal of Statistics. 8 (1): 817-840.
- // arXiv:1303.1288. doi:10.1214/14-EJS909.
- const value_type total = successes + failures;
- if (successes == 0) return {0, 1 - std::pow(alpha_half_, 1 / total)};
- if (failures == 0) return {std::pow(alpha_half_, 1 / total), 1};
- // Source:
- // https://en.wikipedia.org/wiki/
- // Binomial_proportion_confidence_interval#Clopper%E2%80%93Pearson_interval
- math::beta_distribution<value_type> beta_a(successes, failures + 1);
- const value_type a = math::quantile(beta_a, alpha_half_);
- math::beta_distribution<value_type> beta_b(successes + 1, failures);
- const value_type b = math::quantile(beta_b, 1 - alpha_half_);
- return {a, b};
- }
- private:
- value_type alpha_half_;
- };
- } // namespace utility
- } // namespace histogram
- } // namespace boost
- #endif
|