123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196 |
- // Copyright 2020-2023 Daniel Lemire
- // Copyright 2023 Matt Borland
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- //
- // Derivative of: https://github.com/fastfloat/fast_float
- #ifndef BOOST_CHARCONV_DETAIL_FASTFLOAT_DECIMAL_TO_BINARY_HPP
- #define BOOST_CHARCONV_DETAIL_FASTFLOAT_DECIMAL_TO_BINARY_HPP
- #include <boost/charconv/detail/fast_float/float_common.hpp>
- #include <boost/charconv/detail/fast_float/fast_table.hpp>
- #include <cfloat>
- #include <cinttypes>
- #include <cmath>
- #include <cstdint>
- #include <cstdlib>
- #include <cstring>
- namespace boost { namespace charconv { namespace detail { namespace fast_float {
- // This will compute or rather approximate w * 5**q and return a pair of 64-bit words approximating
- // the result, with the "high" part corresponding to the most significant bits and the
- // low part corresponding to the least significant bits.
- //
- template <int bit_precision>
- BOOST_FORCEINLINE BOOST_CHARCONV_FASTFLOAT_CONSTEXPR20
- value128 compute_product_approximation(int64_t q, uint64_t w) {
- const int index = 2 * int(q - powers::smallest_power_of_five);
- // For small values of q, e.g., q in [0,27], the answer is always exact because
- // The line value128 firstproduct = full_multiplication(w, power_of_five_128[index]);
- // gives the exact answer.
- value128 firstproduct = full_multiplication(w, powers::power_of_five_128[index]);
- static_assert((bit_precision >= 0) && (bit_precision <= 64), " precision should be in (0,64]");
- constexpr uint64_t precision_mask = (bit_precision < 64) ?
- (uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision)
- : uint64_t(0xFFFFFFFFFFFFFFFF);
- if((firstproduct.high & precision_mask) == precision_mask) { // could further guard with (lower + w < lower)
- // regarding the second product, we only need secondproduct.high, but our expectation is that the compiler will optimize this extra work away if needed.
- value128 secondproduct = full_multiplication(w, powers::power_of_five_128[index + 1]);
- firstproduct.low += secondproduct.high;
- if(secondproduct.high > firstproduct.low) {
- firstproduct.high++;
- }
- }
- return firstproduct;
- }
- namespace detail {
- /**
- * For q in (0,350), we have that
- * f = (((152170 + 65536) * q ) >> 16);
- * is equal to
- * floor(p) + q
- * where
- * p = log(5**q)/log(2) = q * log(5)/log(2)
- *
- * For negative values of q in (-400,0), we have that
- * f = (((152170 + 65536) * q ) >> 16);
- * is equal to
- * -ceil(p) + q
- * where
- * p = log(5**-q)/log(2) = -q * log(5)/log(2)
- */
- constexpr BOOST_FORCEINLINE int32_t power(int32_t q) noexcept {
- return (((152170 + 65536) * q) >> 16) + 63;
- }
- } // namespace detail
- // create an adjusted mantissa, biased by the invalid power2
- // for significant digits already multiplied by 10 ** q.
- template <typename binary>
- BOOST_FORCEINLINE BOOST_CHARCONV_FASTFLOAT_CONSTEXPR14
- adjusted_mantissa compute_error_scaled(int64_t q, uint64_t w, int lz) noexcept {
- int hilz = int(w >> 63) ^ 1;
- adjusted_mantissa answer;
- answer.mantissa = w << hilz;
- int bias = binary::mantissa_explicit_bits() - binary::minimum_exponent();
- answer.power2 = int32_t(detail::power(int32_t(q)) + bias - hilz - lz - 62 + invalid_am_bias);
- return answer;
- }
- // w * 10 ** q, without rounding the representation up.
- // the power2 in the exponent will be adjusted by invalid_am_bias.
- template <typename binary>
- BOOST_FORCEINLINE BOOST_CHARCONV_FASTFLOAT_CONSTEXPR20
- adjusted_mantissa compute_error(int64_t q, uint64_t w) noexcept {
- int lz = leading_zeroes(w);
- w <<= lz;
- value128 product = compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
- return compute_error_scaled<binary>(q, product.high, lz);
- }
- // w * 10 ** q
- // The returned value should be a valid ieee64 number that simply need to be packed.
- // However, in some very rare cases, the computation will fail. In such cases, we
- // return an adjusted_mantissa with a negative power of 2: the caller should recompute
- // in such cases.
- template <typename binary>
- BOOST_FORCEINLINE BOOST_CHARCONV_FASTFLOAT_CONSTEXPR20
- adjusted_mantissa compute_float(int64_t q, uint64_t w) noexcept {
- adjusted_mantissa answer;
- if ((w == 0) || (q < binary::smallest_power_of_ten())) {
- answer.power2 = 0;
- answer.mantissa = 0;
- // result should be zero
- return answer;
- }
- if (q > binary::largest_power_of_ten()) {
- // we want to get infinity:
- answer.power2 = binary::infinite_power();
- answer.mantissa = 0;
- return answer;
- }
- // At this point in time q is in [powers::smallest_power_of_five, powers::largest_power_of_five].
- // We want the most significant bit of i to be 1. Shift if needed.
- int lz = leading_zeroes(w);
- w <<= lz;
- // The required precision is binary::mantissa_explicit_bits() + 3 because
- // 1. We need the implicit bit
- // 2. We need an extra bit for rounding purposes
- // 3. We might lose a bit due to the "upperbit" routine (result too small, requiring a shift)
- value128 product = compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
- // The computed 'product' is always sufficient.
- // Mathematical proof:
- // Noble Mushtak and Daniel Lemire, Fast Number Parsing Without Fallback (to appear)
- // See script/mushtak_lemire.py
- // The "compute_product_approximation" function can be slightly slower than a branchless approach:
- // value128 product = compute_product(q, w);
- // but in practice, we can win big with the compute_product_approximation if its additional branch
- // is easily predicted. Which is best is data specific.
- int upperbit = int(product.high >> 63);
- answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3);
- answer.power2 = int32_t(detail::power(int32_t(q)) + upperbit - lz - binary::minimum_exponent());
- if (answer.power2 <= 0) { // we have a subnormal?
- // Here have that answer.power2 <= 0 so -answer.power2 >= 0
- if(-answer.power2 + 1 >= 64) { // if we have more than 64 bits below the minimum exponent, you have a zero for sure.
- answer.power2 = 0;
- answer.mantissa = 0;
- // result should be zero
- return answer;
- }
- // next line is safe because -answer.power2 + 1 < 64
- answer.mantissa >>= -answer.power2 + 1;
- // Thankfully, we can't have both "round-to-even" and subnormals because
- // "round-to-even" only occurs for powers close to 0.
- answer.mantissa += (answer.mantissa & 1); // round up
- answer.mantissa >>= 1;
- // There is a weird scenario where we don't have a subnormal but just.
- // Suppose we start with 2.2250738585072013e-308, we end up
- // with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal
- // whereas 0x40000000000000 x 2^-1023-53 is normal. Now, we need to round
- // up 0x3fffffffffffff x 2^-1023-53 and once we do, we are no longer
- // subnormal, but we can only know this after rounding.
- // So we only declare a subnormal if we are smaller than the threshold.
- answer.power2 = (answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) ? 0 : 1;
- return answer;
- }
- // usually, we round *up*, but if we fall right in between and and we have an
- // even basis, we need to round down
- // We are only concerned with the cases where 5**q fits in single 64-bit word.
- if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) && (q <= binary::max_exponent_round_to_even()) &&
- ((answer.mantissa & 3) == 1) ) { // we may fall between two floats!
- // To be in-between two floats we need that in doing
- // answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3);
- // ... we dropped out only zeroes. But if this happened, then we can go back!!!
- if((answer.mantissa << (upperbit + 64 - binary::mantissa_explicit_bits() - 3)) == product.high) {
- answer.mantissa &= ~uint64_t(1); // flip it so that we do not round up
- }
- }
- answer.mantissa += (answer.mantissa & 1); // round up
- answer.mantissa >>= 1;
- if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) {
- answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits());
- answer.power2++; // undo previous addition
- }
- answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits());
- if (answer.power2 >= binary::infinite_power()) { // infinity
- answer.power2 = binary::infinite_power();
- answer.mantissa = 0;
- }
- return answer;
- }
- }}}} // namespace fast_float
- #endif
|