123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671 |
- /*
- * Copyright (c) 2017-2023 zhllxt
- *
- * author : zhllxt
- * email : 37792738@qq.com
- *
- * Distributed under the Boost Software License, Version 1.0. (See accompanying
- * file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- *
- * refrenced from https://github.com/kokke/tiny-AES-c
- */
- #ifndef __ASIO2_AES_IMPL_HPP__
- #define __ASIO2_AES_IMPL_HPP__
- #include <cassert>
- #include <cstdint>
- #include <cstring>
- #include <string>
- #include <vector>
- #include <array>
- #include <sstream>
- namespace asio2
- {
- class aes
- {
- protected:
- // state - array holding the intermediate results during decryption.
- typedef uint8_t state_t[4][4];
- // Block length in bytes - AES is 128b block only
- static constexpr int AES_BLOCKLEN = 16;
- public:
- enum class mode_t
- {
- cbc,
- ecb,
- ctr,
- //ocf, // not supported
- //cfb, // not supported
- };
- public:
- /*
- * if key.size() <= 16, key will be resized to 16 and padded with '\0', the data block is 128 bit.
- * if key.size() > 16 && <= 24, key will be resized to 24 and padded with '\0', the data block is 192 bit.
- * if key.size() > 24, key will be resized to 32 and padded with '\0', the data block is 256 bit.
- */
- explicit aes(std::string key, mode_t mode = mode_t::ecb) : key_(std::move(key)), mode_(mode)
- {
- init();
- }
- ~aes()
- {
- }
- aes(const aes & other) : key_(other.key_)
- {
- init();
- }
- aes & operator=(const aes & other)
- {
- key_ = other.key_;
- init();
- return (*this);
- }
- aes(aes && other) : key_(std::move(other.key_))
- {
- init();
- }
- aes & operator=(aes && other)
- {
- key_ = std::move(other.key_);
- init();
- return (*this);
- }
- mode_t mode() { return mode_; }
- mode_t set_mode() { return mode_; }
- aes & mode(mode_t mode) { mode_ = mode; return (*this); }
- aes & get_mode(mode_t mode) { mode_ = mode; return (*this); }
- aes & iv(uint8_t iv[AES_BLOCKLEN]) { memcpy(&Iv_[0], iv, AES_BLOCKLEN); return (*this); }
- /*
- * note : if msg contains '\0',there may be a wrong result when decrypt
- */
- std::string encrypt(std::string msg)
- {
- if (msg.empty())
- return std::string{};
- if ((msg.size() % AES_BLOCKLEN) != 0)
- {
- msg.resize(msg.size() + AES_BLOCKLEN - (msg.size() % AES_BLOCKLEN));
- }
- switch (mode_)
- {
- case mode_t::cbc: return encrypt_with_cbc(std::move(msg));
- case mode_t::ecb: return encrypt_with_ecb(std::move(msg));
- case mode_t::ctr: return encrypt_with_ctr(std::move(msg));
- }
- return std::string{};
- }
- std::string decrypt(std::string msg)
- {
- if (msg.empty() || (msg.size() % AES_BLOCKLEN) != 0)
- return std::string{};
- std::string s{};
- switch (mode_)
- {
- case mode_t::cbc: s = decrypt_with_cbc(std::move(msg)); break;
- case mode_t::ecb: s = decrypt_with_ecb(std::move(msg)); break;
- case mode_t::ctr: s = decrypt_with_ctr(std::move(msg)); break;
- }
- while (!s.empty() && s.back() == '\0')
- s.erase(s.size() - 1);
- return s;
- }
- protected:
- std::string encrypt_with_cbc(std::string msg)
- {
- AES_init_ctx((const uint8_t*)key_.data());
- AES_CBC_encrypt_buffer((uint8_t*)msg.data(), uint32_t(msg.size()));
- return msg;
- }
- std::string decrypt_with_cbc(std::string msg)
- {
- AES_init_ctx((const uint8_t*)key_.data());
- AES_CBC_decrypt_buffer((uint8_t*)msg.data(), uint32_t(msg.size()));
- return msg;
- }
- std::string encrypt_with_ecb(std::string msg)
- {
- AES_init_ctx((const uint8_t*)key_.data());
- uint8_t * buf = (uint8_t*)msg.data();
- for (std::size_t i = 0; i < msg.size(); i += AES_BLOCKLEN)
- {
- AES_ECB_encrypt(buf);
- buf += AES_BLOCKLEN;
- }
- return msg;
- }
- std::string decrypt_with_ecb(std::string msg)
- {
- AES_init_ctx((const uint8_t*)key_.data());
- uint8_t * buf = (uint8_t*)msg.data();
- for (std::size_t i = 0; i < msg.size(); i += AES_BLOCKLEN)
- {
- AES_ECB_decrypt(buf);
- buf += AES_BLOCKLEN;
- }
- return msg;
- }
- std::string encrypt_with_ctr(std::string msg)
- {
- AES_init_ctx((const uint8_t*)key_.data());
- AES_CTR_xcrypt_buffer((uint8_t*)msg.data(), uint32_t(msg.size()));
- return msg;
- }
- std::string decrypt_with_ctr(std::string msg)
- {
- AES_init_ctx((const uint8_t*)key_.data());
- AES_CTR_xcrypt_buffer((uint8_t*)msg.data(), uint32_t(msg.size()));
- return msg;
- }
- protected:
- void init()
- {
- if (key_.size() <= std::size_t(16)) // 128/8
- {
- key_.resize(16);
- Nk = 4; // The number of 32 bit words in a key.
- Nr = 10; // The number of rounds in AES Cipher.
- RoundKey_.resize(176);
- }
- else if (key_.size() <= std::size_t(24)) // 192/8
- {
- key_.resize(24);
- Nk = 6;
- Nr = 12;
- RoundKey_.resize(208);
- }
- else// 256/8
- {
- key_.resize(32);
- Nk = 8;
- Nr = 14;
- RoundKey_.resize(240);
- }
- }
- void AES_init_ctx(const uint8_t* key)
- {
- KeyExpansion(&RoundKey_[0], key);
- }
- void AES_init_ctx_iv(const uint8_t* key, const uint8_t* iv)
- {
- KeyExpansion(&RoundKey_[0], key);
- memcpy(&Iv_[0], iv, AES_BLOCKLEN);
- }
- void AES_ctx_set_iv(const uint8_t* iv)
- {
- memcpy(&Iv_[0], iv, AES_BLOCKLEN);
- }
- void AES_ECB_encrypt(uint8_t* buf)
- {
- // The next function call encrypts the PlainText with the Key using AES algorithm.
- Cipher((state_t*)buf, &RoundKey_[0]);
- }
- void AES_ECB_decrypt(uint8_t* buf)
- {
- // The next function call decrypts the PlainText with the Key using AES algorithm.
- InvCipher((state_t*)buf, &RoundKey_[0]);
- }
- void AES_CBC_encrypt_buffer(uint8_t* buf, uint32_t length)
- {
- uint32_t i;
- uint8_t *iv = &Iv_[0];
- for (i = 0; i < length; i += AES_BLOCKLEN)
- {
- XorWithIv(buf, iv);
- Cipher((state_t*)buf, &RoundKey_[0]);
- iv = buf;
- buf += AES_BLOCKLEN;
- }
- /* store Iv in ctx for next call */
- memcpy(&Iv_[0], iv, AES_BLOCKLEN);
- }
- void AES_CBC_decrypt_buffer(uint8_t* buf, uint32_t length)
- {
- uint32_t i;
- uint8_t storeNextIv[AES_BLOCKLEN];
- for (i = 0; i < length; i += AES_BLOCKLEN)
- {
- memcpy(storeNextIv, buf, AES_BLOCKLEN);
- InvCipher((state_t*)buf, &RoundKey_[0]);
- XorWithIv(buf, &Iv_[0]);
- memcpy(&Iv_[0], storeNextIv, AES_BLOCKLEN);
- buf += AES_BLOCKLEN;
- }
- }
- void AES_CTR_xcrypt_buffer(uint8_t* buf, uint32_t length)
- {
- uint8_t buffer[AES_BLOCKLEN];
- unsigned i;
- int bi;
- for (i = 0, bi = AES_BLOCKLEN; i < length; ++i, ++bi)
- {
- if (bi == AES_BLOCKLEN) /* we need to regen xor compliment in buffer */
- {
- memcpy(buffer, &Iv_[0], AES_BLOCKLEN);
- Cipher((state_t*)buffer, &RoundKey_[0]);
- /* Increment Iv and handle overflow */
- for (bi = (AES_BLOCKLEN - 1); bi >= 0; --bi)
- {
- /* inc will overflow */
- if (Iv_[bi] == 255)
- {
- Iv_[bi] = uint8_t(0);
- continue;
- }
- Iv_[bi] = uint8_t(Iv_[bi] + uint8_t(1));
- break;
- }
- bi = 0;
- }
- buf[i] = (buf[i] ^ buffer[bi]);
- }
- }
- void XorWithIv(uint8_t* buf, const uint8_t* iv)
- {
- uint8_t i;
- for (i = 0; i < AES_BLOCKLEN; ++i) // The block in AES is always 128bit no matter the key size
- {
- buf[i] ^= iv[i];
- }
- }
- inline uint8_t Multiply(uint8_t x, uint8_t y)
- {
- return (uint8_t((((y & 1) * x) ^
- ((y>>1 & 1) * xtime(x)) ^
- ((y>>2 & 1) * xtime(xtime(x))) ^
- ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
- ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))))); /* this last call to xtime() can be omitted */
- }
- // This function adds the round key to state.
- // The round key is added to the state by an XOR function.
- void AddRoundKey(uint8_t round, state_t* state, const uint8_t* RoundKey)
- {
- uint8_t i,j;
- for (i = 0; i < 4; ++i)
- {
- for (j = 0; j < 4; ++j)
- {
- (*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j];
- }
- }
- }
- // The SubBytes Function Substitutes the values in the
- // state matrix with values in an S-box.
- void SubBytes(state_t* state)
- {
- uint8_t i, j;
- for (i = 0; i < 4; ++i)
- {
- for (j = 0; j < 4; ++j)
- {
- (*state)[j][i] = getSBoxValue((*state)[j][i]);
- }
- }
- }
- // The ShiftRows() function shifts the rows in the state to the left.
- // Each row is shifted with different offset.
- // Offset = Row number. So the first row is not shifted.
- void ShiftRows(state_t* state)
- {
- uint8_t temp;
- // Rotate first row 1 columns to left
- temp = (*state)[0][1];
- (*state)[0][1] = (*state)[1][1];
- (*state)[1][1] = (*state)[2][1];
- (*state)[2][1] = (*state)[3][1];
- (*state)[3][1] = temp;
- // Rotate second row 2 columns to left
- temp = (*state)[0][2];
- (*state)[0][2] = (*state)[2][2];
- (*state)[2][2] = temp;
- temp = (*state)[1][2];
- (*state)[1][2] = (*state)[3][2];
- (*state)[3][2] = temp;
- // Rotate third row 3 columns to left
- temp = (*state)[0][3];
- (*state)[0][3] = (*state)[3][3];
- (*state)[3][3] = (*state)[2][3];
- (*state)[2][3] = (*state)[1][3];
- (*state)[1][3] = temp;
- }
- inline uint8_t xtime(uint8_t x)
- {
- return (uint8_t(((x<<1) ^ (((x>>7) & 1) * 0x1b))));
- }
- // MixColumns function mixes the columns of the state matrix
- void MixColumns(state_t* state)
- {
- uint8_t i;
- uint8_t Tmp, Tm, t;
- for (i = 0; i < 4; ++i)
- {
- t = (*state)[i][0];
- Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ;
- Tm = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp ;
- Tm = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp ;
- Tm = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp ;
- Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp ;
- }
- }
- // MixColumns function mixes the columns of the state matrix.
- // The method used to multiply may be difficult to understand for the inexperienced.
- // Please use the references to gain more information.
- void InvMixColumns(state_t* state)
- {
- int i;
- uint8_t a, b, c, d;
- for (i = 0; i < 4; ++i)
- {
- a = (*state)[i][0];
- b = (*state)[i][1];
- c = (*state)[i][2];
- d = (*state)[i][3];
- (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
- (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
- (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
- (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
- }
- }
- // The SubBytes Function Substitutes the values in the
- // state matrix with values in an S-box.
- void InvSubBytes(state_t* state)
- {
- uint8_t i, j;
- for (i = 0; i < 4; ++i)
- {
- for (j = 0; j < 4; ++j)
- {
- (*state)[j][i] = getSBoxInvert((*state)[j][i]);
- }
- }
- }
- void InvShiftRows(state_t* state)
- {
- uint8_t temp;
- // Rotate first row 1 columns to right
- temp = (*state)[3][1];
- (*state)[3][1] = (*state)[2][1];
- (*state)[2][1] = (*state)[1][1];
- (*state)[1][1] = (*state)[0][1];
- (*state)[0][1] = temp;
- // Rotate second row 2 columns to right
- temp = (*state)[0][2];
- (*state)[0][2] = (*state)[2][2];
- (*state)[2][2] = temp;
- temp = (*state)[1][2];
- (*state)[1][2] = (*state)[3][2];
- (*state)[3][2] = temp;
- // Rotate third row 3 columns to right
- temp = (*state)[0][3];
- (*state)[0][3] = (*state)[1][3];
- (*state)[1][3] = (*state)[2][3];
- (*state)[2][3] = (*state)[3][3];
- (*state)[3][3] = temp;
- }
- inline uint8_t getSBoxValue(uint8_t num)
- {
- return sbox[num];
- }
- inline uint8_t getSBoxInvert(uint8_t num)
- {
- return rsbox[num];
- }
- // This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
- void KeyExpansion(uint8_t* RoundKey, const uint8_t* Key)
- {
- unsigned i, j, k;
- uint8_t tempa[4]; // Used for the column/row operations
- // The first round key is the key itself.
- for (i = 0; i < Nk; ++i)
- {
- RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
- RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
- RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
- RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
- }
- // All other round keys are found from the previous round keys.
- for (i = Nk; i < Nb * (Nr + 1); ++i)
- {
- {
- k = (i - 1) * 4;
- tempa[0] = RoundKey[k + 0];
- tempa[1] = RoundKey[k + 1];
- tempa[2] = RoundKey[k + 2];
- tempa[3] = RoundKey[k + 3];
- }
- if (i % Nk == 0)
- {
- // This function shifts the 4 bytes in a word to the left once.
- // [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
- // Function RotWord()
- {
- const uint8_t u8tmp = tempa[0];
- tempa[0] = tempa[1];
- tempa[1] = tempa[2];
- tempa[2] = tempa[3];
- tempa[3] = u8tmp;
- }
- // SubWord() is a function that takes a four-byte input word and
- // applies the S-box to each of the four bytes to produce an output word.
- // Function Subword()
- {
- tempa[0] = getSBoxValue(tempa[0]);
- tempa[1] = getSBoxValue(tempa[1]);
- tempa[2] = getSBoxValue(tempa[2]);
- tempa[3] = getSBoxValue(tempa[3]);
- }
- tempa[0] = tempa[0] ^ Rcon[i / Nk];
- }
- if (Nk == 8) // AES256
- {
- if (i % Nk == 4)
- {
- // Function Subword()
- {
- tempa[0] = getSBoxValue(tempa[0]);
- tempa[1] = getSBoxValue(tempa[1]);
- tempa[2] = getSBoxValue(tempa[2]);
- tempa[3] = getSBoxValue(tempa[3]);
- }
- }
- }
- j = i * 4; k = (i - Nk) * 4;
- RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0];
- RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1];
- RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2];
- RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3];
- }
- }
- // Cipher is the main function that encrypts the PlainText.
- void Cipher(state_t* state, const uint8_t* RoundKey)
- {
- uint8_t round = 0;
- // Add the First round key to the state before starting the rounds.
- AddRoundKey(0, state, RoundKey);
- // There will be Nr rounds.
- // The first Nr-1 rounds are identical.
- // These Nr rounds are executed in the loop below.
- // Last one without MixColumns()
- for (round = 1; ; ++round)
- {
- SubBytes(state);
- ShiftRows(state);
- if (round == Nr) {
- break;
- }
- MixColumns(state);
- AddRoundKey(round, state, RoundKey);
- }
- // Add round key to last round
- AddRoundKey(uint8_t(Nr), state, RoundKey);
- }
- void InvCipher(state_t* state, const uint8_t* RoundKey)
- {
- uint8_t round = 0;
- // Add the First round key to the state before starting the rounds.
- AddRoundKey(uint8_t(Nr), state, RoundKey);
- // There will be Nr rounds.
- // The first Nr-1 rounds are identical.
- // These Nr rounds are executed in the loop below.
- // Last one without InvMixColumn()
- for (round = uint8_t(Nr - 1); ; --round)
- {
- InvShiftRows(state);
- InvSubBytes(state);
- AddRoundKey(round, state, RoundKey);
- if (round == 0) {
- break;
- }
- InvMixColumns(state);
- }
- }
- protected:
- std::string key_;
- mode_t mode_ = mode_t::ecb;
- // The number of columns comprising a state in AES. This is a constant in AES. Value=4
- unsigned int Nb = 4;
- unsigned int Nk = 4; // The number of 32 bit words in a key.
- unsigned int Nr = 10; // The number of rounds in AES Cipher.
- std::vector<uint8_t> RoundKey_{};
- std::array<uint8_t, AES_BLOCKLEN> Iv_{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f };
- // The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
- // The numbers below can be computed dynamically trading ROM for RAM -
- // This can be useful in (embedded) bootloader applications, where ROM is often limited.
- const uint8_t sbox[256] =
- {
- //0 1 2 3 4 5 6 7 8 9 A B C D E F
- 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
- 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
- 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
- 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
- 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
- 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
- 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
- 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
- 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
- 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
- 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
- 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
- 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
- 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
- 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
- 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
- };
- const uint8_t rsbox[256] =
- {
- 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
- 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
- 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
- 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
- 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
- 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
- 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
- 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
- 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
- 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
- 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
- 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
- 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
- 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
- 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
- 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
- };
- // The round constant word array, Rcon[i], contains the values given by
- // x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
- const uint8_t Rcon[11] =
- {
- 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36
- };
- };
- }
- #endif // !__ASIO2_AES_IMPL_HPP__
|