123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838 |
- /*
- [auto_generated]
- boost/numeric/odeint/stepper/bulirsch_stoer_dense_out.hpp
- [begin_description]
- Implementaiton of the Burlish-Stoer method with dense output
- [end_description]
- Copyright 2011-2015 Mario Mulansky
- Copyright 2011-2013 Karsten Ahnert
- Copyright 2012 Christoph Koke
- Distributed under the Boost Software License, Version 1.0.
- (See accompanying file LICENSE_1_0.txt or
- copy at http://www.boost.org/LICENSE_1_0.txt)
- */
- #ifndef BOOST_NUMERIC_ODEINT_STEPPER_BULIRSCH_STOER_DENSE_OUT_HPP_INCLUDED
- #define BOOST_NUMERIC_ODEINT_STEPPER_BULIRSCH_STOER_DENSE_OUT_HPP_INCLUDED
- #include <iostream>
- #include <algorithm>
- #include <boost/config.hpp> // for min/max guidelines
- #include <boost/numeric/odeint/util/bind.hpp>
- #include <boost/math/special_functions/binomial.hpp>
- #include <boost/numeric/odeint/stepper/controlled_runge_kutta.hpp>
- #include <boost/numeric/odeint/stepper/modified_midpoint.hpp>
- #include <boost/numeric/odeint/stepper/controlled_step_result.hpp>
- #include <boost/numeric/odeint/algebra/range_algebra.hpp>
- #include <boost/numeric/odeint/algebra/default_operations.hpp>
- #include <boost/numeric/odeint/algebra/algebra_dispatcher.hpp>
- #include <boost/numeric/odeint/algebra/operations_dispatcher.hpp>
- #include <boost/numeric/odeint/util/state_wrapper.hpp>
- #include <boost/numeric/odeint/util/is_resizeable.hpp>
- #include <boost/numeric/odeint/util/resizer.hpp>
- #include <boost/numeric/odeint/util/unit_helper.hpp>
- #include <boost/numeric/odeint/integrate/max_step_checker.hpp>
- namespace boost {
- namespace numeric {
- namespace odeint {
- template<
- class State ,
- class Value = double ,
- class Deriv = State ,
- class Time = Value ,
- class Algebra = typename algebra_dispatcher< State >::algebra_type ,
- class Operations = typename operations_dispatcher< State >::operations_type ,
- class Resizer = initially_resizer
- >
- class bulirsch_stoer_dense_out {
- public:
- typedef State state_type;
- typedef Value value_type;
- typedef Deriv deriv_type;
- typedef Time time_type;
- typedef Algebra algebra_type;
- typedef Operations operations_type;
- typedef Resizer resizer_type;
- typedef dense_output_stepper_tag stepper_category;
- #ifndef DOXYGEN_SKIP
- typedef state_wrapper< state_type > wrapped_state_type;
- typedef state_wrapper< deriv_type > wrapped_deriv_type;
- typedef bulirsch_stoer_dense_out< State , Value , Deriv , Time , Algebra , Operations , Resizer > controlled_error_bs_type;
- typedef typename inverse_time< time_type >::type inv_time_type;
- typedef std::vector< value_type > value_vector;
- typedef std::vector< time_type > time_vector;
- typedef std::vector< inv_time_type > inv_time_vector; //should be 1/time_type for boost.units
- typedef std::vector< value_vector > value_matrix;
- typedef std::vector< size_t > int_vector;
- typedef std::vector< wrapped_state_type > state_vector_type;
- typedef std::vector< wrapped_deriv_type > deriv_vector_type;
- typedef std::vector< deriv_vector_type > deriv_table_type;
- #endif //DOXYGEN_SKIP
- const static size_t m_k_max = 8;
- bulirsch_stoer_dense_out(
- value_type eps_abs = 1E-6 , value_type eps_rel = 1E-6 ,
- value_type factor_x = 1.0 , value_type factor_dxdt = 1.0 ,
- time_type max_dt = static_cast<time_type>(0) ,
- bool control_interpolation = false )
- : m_error_checker( eps_abs , eps_rel , factor_x, factor_dxdt ) ,
- m_max_dt(max_dt) ,
- m_control_interpolation( control_interpolation) ,
- m_last_step_rejected( false ) , m_first( true ) ,
- m_current_state_x1( true ) ,
- m_error( m_k_max ) ,
- m_interval_sequence( m_k_max+1 ) ,
- m_coeff( m_k_max+1 ) ,
- m_cost( m_k_max+1 ) ,
- m_facmin_table( m_k_max+1 ) ,
- m_table( m_k_max ) ,
- m_mp_states( m_k_max+1 ) ,
- m_derivs( m_k_max+1 ) ,
- m_diffs( 2*m_k_max+2 ) ,
- STEPFAC1( 0.65 ) , STEPFAC2( 0.94 ) , STEPFAC3( 0.02 ) , STEPFAC4( 4.0 ) , KFAC1( 0.8 ) , KFAC2( 0.9 )
- {
- BOOST_USING_STD_MIN();
- BOOST_USING_STD_MAX();
- for( unsigned short i = 0; i < m_k_max+1; i++ )
- {
- /* only this specific sequence allows for dense output */
- m_interval_sequence[i] = 2 + 4*i; // 2 6 10 14 ...
- m_derivs[i].resize( m_interval_sequence[i] );
- if( i == 0 )
- {
- m_cost[i] = m_interval_sequence[i];
- } else
- {
- m_cost[i] = m_cost[i-1] + m_interval_sequence[i];
- }
- m_facmin_table[i] = pow BOOST_PREVENT_MACRO_SUBSTITUTION( STEPFAC3 , static_cast< value_type >(1) / static_cast< value_type >( 2*i+1 ) );
- m_coeff[i].resize(i);
- for( size_t k = 0 ; k < i ; ++k )
- {
- const value_type r = static_cast< value_type >( m_interval_sequence[i] ) / static_cast< value_type >( m_interval_sequence[k] );
- m_coeff[i][k] = 1.0 / ( r*r - static_cast< value_type >( 1.0 ) ); // coefficients for extrapolation
- }
- // crude estimate of optimal order
- m_current_k_opt = 4;
- /* no calculation because log10 might not exist for value_type!
- const value_type logfact( -log10( max BOOST_PREVENT_MACRO_SUBSTITUTION( eps_rel , static_cast< value_type >( 1.0E-12 ) ) ) * 0.6 + 0.5 );
- m_current_k_opt = max BOOST_PREVENT_MACRO_SUBSTITUTION( 1 , min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<int>( m_k_max-1 ) , static_cast<int>( logfact ) ));
- */
- }
- int num = 1;
- for( int i = 2*(m_k_max)+1 ; i >=0 ; i-- )
- {
- m_diffs[i].resize( num );
- num += (i+1)%2;
- }
- }
- template< class System , class StateIn , class DerivIn , class StateOut , class DerivOut >
- controlled_step_result try_step( System system , const StateIn &in , const DerivIn &dxdt , time_type &t , StateOut &out , DerivOut &dxdt_new , time_type &dt )
- {
- if( m_max_dt != static_cast<time_type>(0) && detail::less_with_sign(m_max_dt, dt, dt) )
- {
- // given step size is bigger then max_dt
- // set limit and return fail
- dt = m_max_dt;
- return fail;
- }
- BOOST_USING_STD_MIN();
- BOOST_USING_STD_MAX();
- using std::pow;
-
- static const value_type val1( 1.0 );
- bool reject( true );
- time_vector h_opt( m_k_max+1 );
- inv_time_vector work( m_k_max+1 );
- m_k_final = 0;
- time_type new_h = dt;
- //std::cout << "t=" << t <<", dt=" << dt << ", k_opt=" << m_current_k_opt << ", first: " << m_first << std::endl;
- for( size_t k = 0 ; k <= m_current_k_opt+1 ; k++ )
- {
- m_midpoint.set_steps( m_interval_sequence[k] );
- if( k == 0 )
- {
- m_midpoint.do_step( system , in , dxdt , t , out , dt , m_mp_states[k].m_v , m_derivs[k]);
- }
- else
- {
- m_midpoint.do_step( system , in , dxdt , t , m_table[k-1].m_v , dt , m_mp_states[k].m_v , m_derivs[k] );
- extrapolate( k , m_table , m_coeff , out );
- // get error estimate
- m_algebra.for_each3( m_err.m_v , out , m_table[0].m_v ,
- typename operations_type::template scale_sum2< value_type , value_type >( val1 , -val1 ) );
- const value_type error = m_error_checker.error( m_algebra , in , dxdt , m_err.m_v , dt );
- h_opt[k] = calc_h_opt( dt , error , k );
- work[k] = static_cast<value_type>( m_cost[k] ) / h_opt[k];
- m_k_final = k;
- if( (k == m_current_k_opt-1) || m_first )
- { // convergence before k_opt ?
- if( error < 1.0 )
- {
- //convergence
- reject = false;
- if( (work[k] < KFAC2*work[k-1]) || (m_current_k_opt <= 2) )
- {
- // leave order as is (except we were in first round)
- m_current_k_opt = min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<int>(m_k_max)-1 , max BOOST_PREVENT_MACRO_SUBSTITUTION( 2 , static_cast<int>(k)+1 ) );
- new_h = h_opt[k] * static_cast<value_type>( m_cost[k+1] ) / static_cast<value_type>( m_cost[k] );
- } else {
- m_current_k_opt = min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<int>(m_k_max)-1 , max BOOST_PREVENT_MACRO_SUBSTITUTION( 2 , static_cast<int>(k) ) );
- new_h = h_opt[k];
- }
- break;
- }
- else if( should_reject( error , k ) && !m_first )
- {
- reject = true;
- new_h = h_opt[k];
- break;
- }
- }
- if( k == m_current_k_opt )
- { // convergence at k_opt ?
- if( error < 1.0 )
- {
- //convergence
- reject = false;
- if( (work[k-1] < KFAC2*work[k]) )
- {
- m_current_k_opt = max BOOST_PREVENT_MACRO_SUBSTITUTION( 2 , static_cast<int>(m_current_k_opt)-1 );
- new_h = h_opt[m_current_k_opt];
- }
- else if( (work[k] < KFAC2*work[k-1]) && !m_last_step_rejected )
- {
- m_current_k_opt = min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<int>(m_k_max)-1 , static_cast<int>(m_current_k_opt)+1 );
- new_h = h_opt[k]*static_cast<value_type>( m_cost[m_current_k_opt] ) / static_cast<value_type>( m_cost[k] );
- } else
- new_h = h_opt[m_current_k_opt];
- break;
- }
- else if( should_reject( error , k ) )
- {
- reject = true;
- new_h = h_opt[m_current_k_opt];
- break;
- }
- }
- if( k == m_current_k_opt+1 )
- { // convergence at k_opt+1 ?
- if( error < 1.0 )
- { //convergence
- reject = false;
- if( work[k-2] < KFAC2*work[k-1] )
- m_current_k_opt = max BOOST_PREVENT_MACRO_SUBSTITUTION( 2 , static_cast<int>(m_current_k_opt)-1 );
- if( (work[k] < KFAC2*work[m_current_k_opt]) && !m_last_step_rejected )
- m_current_k_opt = min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<int>(m_k_max)-1 , static_cast<int>(k) );
- new_h = h_opt[m_current_k_opt];
- } else
- {
- reject = true;
- new_h = h_opt[m_current_k_opt];
- }
- break;
- }
- }
- }
- if( !reject )
- {
- //calculate dxdt for next step and dense output
- typename odeint::unwrap_reference< System >::type &sys = system;
- sys( out , dxdt_new , t+dt );
- //prepare dense output
- value_type error = prepare_dense_output( m_k_final , in , dxdt , out , dxdt_new , dt );
- if( error > static_cast<value_type>(10) ) // we are not as accurate for interpolation as for the steps
- {
- reject = true;
- new_h = dt * pow BOOST_PREVENT_MACRO_SUBSTITUTION( error , static_cast<value_type>(-1)/(2*m_k_final+2) );
- } else {
- t += dt;
- }
- }
- //set next stepsize
- if( !m_last_step_rejected || (new_h < dt) )
- {
- // limit step size
- if( m_max_dt != static_cast<time_type>(0) )
- {
- new_h = detail::min_abs(m_max_dt, new_h);
- }
- dt = new_h;
- }
- m_last_step_rejected = reject;
- if( reject )
- return fail;
- else
- return success;
- }
- template< class StateType >
- void initialize( const StateType &x0 , const time_type &t0 , const time_type &dt0 )
- {
- m_resizer.adjust_size(x0, [this](auto&& arg) { return this->resize_impl<StateType>(std::forward<decltype(arg)>(arg)); });
- boost::numeric::odeint::copy( x0 , get_current_state() );
- m_t = t0;
- m_dt = dt0;
- reset();
- }
- /* =======================================================
- * the actual step method that should be called from outside (maybe make try_step private?)
- */
- template< class System >
- std::pair< time_type , time_type > do_step( System system )
- {
- if( m_first )
- {
- typename odeint::unwrap_reference< System >::type &sys = system;
- sys( get_current_state() , get_current_deriv() , m_t );
- }
- failed_step_checker fail_checker; // to throw a runtime_error if step size adjustment fails
- controlled_step_result res = fail;
- m_t_last = m_t;
- while( res == fail )
- {
- res = try_step( system , get_current_state() , get_current_deriv() , m_t , get_old_state() , get_old_deriv() , m_dt );
- m_first = false;
- fail_checker(); // check for overflow of failed steps
- }
- toggle_current_state();
- return std::make_pair( m_t_last , m_t );
- }
- /* performs the interpolation from a calculated step */
- template< class StateOut >
- void calc_state( time_type t , StateOut &x ) const
- {
- do_interpolation( t , x );
- }
- const state_type& current_state( void ) const
- {
- return get_current_state();
- }
- time_type current_time( void ) const
- {
- return m_t;
- }
- const state_type& previous_state( void ) const
- {
- return get_old_state();
- }
- time_type previous_time( void ) const
- {
- return m_t_last;
- }
- time_type current_time_step( void ) const
- {
- return m_dt;
- }
- /** \brief Resets the internal state of the stepper. */
- void reset()
- {
- m_first = true;
- m_last_step_rejected = false;
- }
- template< class StateIn >
- void adjust_size( const StateIn &x )
- {
- resize_impl( x );
- m_midpoint.adjust_size( x );
- }
- protected:
- time_type m_max_dt;
- private:
- template< class StateInOut , class StateVector >
- void extrapolate( size_t k , StateVector &table , const value_matrix &coeff , StateInOut &xest , size_t order_start_index = 0 )
- //polynomial extrapolation, see http://www.nr.com/webnotes/nr3web21.pdf
- {
- static const value_type val1( 1.0 );
- for( int j=k-1 ; j>0 ; --j )
- {
- m_algebra.for_each3( table[j-1].m_v , table[j].m_v , table[j-1].m_v ,
- typename operations_type::template scale_sum2< value_type , value_type >( val1 + coeff[k + order_start_index][j + order_start_index] ,
- -coeff[k + order_start_index][j + order_start_index] ) );
- }
- m_algebra.for_each3( xest , table[0].m_v , xest ,
- typename operations_type::template scale_sum2< value_type , value_type >( val1 + coeff[k + order_start_index][0 + order_start_index] ,
- -coeff[k + order_start_index][0 + order_start_index]) );
- }
- template< class StateVector >
- void extrapolate_dense_out( size_t k , StateVector &table , const value_matrix &coeff , size_t order_start_index = 0 )
- //polynomial extrapolation, see http://www.nr.com/webnotes/nr3web21.pdf
- {
- // result is written into table[0]
- static const value_type val1( 1.0 );
- for( int j=k ; j>1 ; --j )
- {
- m_algebra.for_each3( table[j-1].m_v , table[j].m_v , table[j-1].m_v ,
- typename operations_type::template scale_sum2< value_type , value_type >( val1 + coeff[k + order_start_index][j + order_start_index - 1] ,
- -coeff[k + order_start_index][j + order_start_index - 1] ) );
- }
- m_algebra.for_each3( table[0].m_v , table[1].m_v , table[0].m_v ,
- typename operations_type::template scale_sum2< value_type , value_type >( val1 + coeff[k + order_start_index][order_start_index] ,
- -coeff[k + order_start_index][order_start_index]) );
- }
- time_type calc_h_opt( time_type h , value_type error , size_t k ) const
- {
- BOOST_USING_STD_MIN();
- BOOST_USING_STD_MAX();
- using std::pow;
- value_type expo = static_cast<value_type>(1)/(m_interval_sequence[k-1]);
- value_type facmin = m_facmin_table[k];
- value_type fac;
- if (error == 0.0)
- fac = static_cast<value_type>(1)/facmin;
- else
- {
- fac = STEPFAC2 / pow BOOST_PREVENT_MACRO_SUBSTITUTION( error / STEPFAC1 , expo );
- fac = max BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<value_type>( facmin/STEPFAC4 ) , min BOOST_PREVENT_MACRO_SUBSTITUTION( static_cast<value_type>(static_cast<value_type>(1)/facmin) , fac ) );
- }
- return h*fac;
- }
- bool in_convergence_window( size_t k ) const
- {
- if( (k == m_current_k_opt-1) && !m_last_step_rejected )
- return true; // decrease order only if last step was not rejected
- return ( (k == m_current_k_opt) || (k == m_current_k_opt+1) );
- }
- bool should_reject( value_type error , size_t k ) const
- {
- if( k == m_current_k_opt-1 )
- {
- const value_type d = m_interval_sequence[m_current_k_opt] * m_interval_sequence[m_current_k_opt+1] /
- (m_interval_sequence[0]*m_interval_sequence[0]);
- //step will fail, criterion 17.3.17 in NR
- return ( error > d*d );
- }
- else if( k == m_current_k_opt )
- {
- const value_type d = m_interval_sequence[m_current_k_opt+1] / m_interval_sequence[0];
- return ( error > d*d );
- } else
- return error > 1.0;
- }
- template< class StateIn1 , class DerivIn1 , class StateIn2 , class DerivIn2 >
- value_type prepare_dense_output( int k , const StateIn1 &x_start , const DerivIn1 &dxdt_start ,
- const StateIn2 & /* x_end */ , const DerivIn2 & /*dxdt_end */ , time_type dt )
- /* k is the order to which the result was approximated */
- {
- /* compute the coefficients of the interpolation polynomial
- * we parametrize the interval t .. t+dt by theta = -1 .. 1
- * we use 2k+3 values at the interval center theta=0 to obtain the interpolation coefficients
- * the values are x(t+dt/2) and the derivatives dx/dt , ... d^(2k+2) x / dt^(2k+2) at the midpoints
- * the derivatives are approximated via finite differences
- * all values are obtained from interpolation of the results from the increasing orders of the midpoint calls
- */
- // calculate finite difference approximations to derivatives at the midpoint
- for( int j = 0 ; j<=k ; j++ )
- {
- /* not working with boost units... */
- const value_type d = m_interval_sequence[j] / ( static_cast<value_type>(2) * dt );
- value_type f = 1.0; //factor 1/2 here because our interpolation interval has length 2 !!!
- for( int kappa = 0 ; kappa <= 2*j+1 ; ++kappa )
- {
- calculate_finite_difference( j , kappa , f , dxdt_start );
- f *= d;
- }
- if( j > 0 )
- extrapolate_dense_out( j , m_mp_states , m_coeff );
- }
- time_type d = dt/2;
- // extrapolate finite differences
- for( int kappa = 0 ; kappa<=2*k+1 ; kappa++ )
- {
- for( int j=1 ; j<=(k-kappa/2) ; ++j )
- extrapolate_dense_out( j , m_diffs[kappa] , m_coeff , kappa/2 );
- // extrapolation results are now stored in m_diffs[kappa][0]
- // divide kappa-th derivative by kappa because we need these terms for dense output interpolation
- m_algebra.for_each1( m_diffs[kappa][0].m_v , typename operations_type::template scale< time_type >( static_cast<time_type>(d) ) );
- d *= dt/(2*(kappa+2));
- }
- // dense output coefficients a_0 is stored in m_mp_states[0], a_i for i = 1...2k are stored in m_diffs[i-1][0]
- // the error is just the highest order coefficient of the interpolation polynomial
- // this is because we use only the midpoint theta=0 as support for the interpolation (remember that theta = -1 .. 1)
- value_type error = 0.0;
- if( m_control_interpolation )
- {
- boost::numeric::odeint::copy( m_diffs[2*k+1][0].m_v , m_err.m_v );
- error = m_error_checker.error( m_algebra , x_start , dxdt_start , m_err.m_v , dt );
- }
- return error;
- }
- template< class DerivIn >
- void calculate_finite_difference( size_t j , size_t kappa , value_type fac , const DerivIn &dxdt )
- {
- const int m = m_interval_sequence[j]/2-1;
- if( kappa == 0) // no calculation required for 0th derivative of f
- {
- m_algebra.for_each2( m_diffs[0][j].m_v , m_derivs[j][m].m_v ,
- typename operations_type::template scale_sum1< value_type >( fac ) );
- }
- else
- {
- // calculate the index of m_diffs for this kappa-j-combination
- const int j_diffs = j - kappa/2;
- m_algebra.for_each2( m_diffs[kappa][j_diffs].m_v , m_derivs[j][m+kappa].m_v ,
- typename operations_type::template scale_sum1< value_type >( fac ) );
- value_type sign = -1.0;
- int c = 1;
- //computes the j-th order finite difference for the kappa-th derivative of f at t+dt/2 using function evaluations stored in m_derivs
- for( int i = m+static_cast<int>(kappa)-2 ; i >= m-static_cast<int>(kappa) ; i -= 2 )
- {
- if( i >= 0 )
- {
- m_algebra.for_each3( m_diffs[kappa][j_diffs].m_v , m_diffs[kappa][j_diffs].m_v , m_derivs[j][i].m_v ,
- typename operations_type::template scale_sum2< value_type , value_type >( 1.0 ,
- sign * fac * boost::math::binomial_coefficient< value_type >( kappa , c ) ) );
- }
- else
- {
- m_algebra.for_each3( m_diffs[kappa][j_diffs].m_v , m_diffs[kappa][j_diffs].m_v , dxdt ,
- typename operations_type::template scale_sum2< value_type , value_type >( 1.0 , sign * fac ) );
- }
- sign *= -1;
- ++c;
- }
- }
- }
- template< class StateOut >
- void do_interpolation( time_type t , StateOut &out ) const
- {
- // interpolation polynomial is defined for theta = -1 ... 1
- // m_k_final is the number of order-iterations done for the last step - it governs the order of the interpolation polynomial
- const value_type theta = 2 * get_unit_value( (t - m_t_last) / (m_t - m_t_last) ) - 1;
- // we use only values at interval center, that is theta=0, for interpolation
- // our interpolation polynomial is thus of order 2k+2, hence we have 2k+3 terms
- boost::numeric::odeint::copy( m_mp_states[0].m_v , out );
- // add remaining terms: x += a_1 theta + a2 theta^2 + ... + a_{2k} theta^{2k}
- value_type theta_pow( theta );
- for( size_t i=0 ; i<=2*m_k_final+1 ; ++i )
- {
- m_algebra.for_each3( out , out , m_diffs[i][0].m_v ,
- typename operations_type::template scale_sum2< value_type >( static_cast<value_type>(1) , theta_pow ) );
- theta_pow *= theta;
- }
- }
- /* Resizer methods */
- template< class StateIn >
- bool resize_impl( const StateIn &x )
- {
- bool resized( false );
- resized |= adjust_size_by_resizeability( m_x1 , x , typename is_resizeable<state_type>::type() );
- resized |= adjust_size_by_resizeability( m_x2 , x , typename is_resizeable<state_type>::type() );
- resized |= adjust_size_by_resizeability( m_dxdt1 , x , typename is_resizeable<state_type>::type() );
- resized |= adjust_size_by_resizeability( m_dxdt2 , x , typename is_resizeable<state_type>::type() );
- resized |= adjust_size_by_resizeability( m_err , x , typename is_resizeable<state_type>::type() );
- for( size_t i = 0 ; i < m_k_max ; ++i )
- resized |= adjust_size_by_resizeability( m_table[i] , x , typename is_resizeable<state_type>::type() );
- for( size_t i = 0 ; i < m_k_max+1 ; ++i )
- resized |= adjust_size_by_resizeability( m_mp_states[i] , x , typename is_resizeable<state_type>::type() );
- for( size_t i = 0 ; i < m_k_max+1 ; ++i )
- for( size_t j = 0 ; j < m_derivs[i].size() ; ++j )
- resized |= adjust_size_by_resizeability( m_derivs[i][j] , x , typename is_resizeable<deriv_type>::type() );
- for( size_t i = 0 ; i < 2*m_k_max+2 ; ++i )
- for( size_t j = 0 ; j < m_diffs[i].size() ; ++j )
- resized |= adjust_size_by_resizeability( m_diffs[i][j] , x , typename is_resizeable<deriv_type>::type() );
- return resized;
- }
- state_type& get_current_state( void )
- {
- return m_current_state_x1 ? m_x1.m_v : m_x2.m_v ;
- }
-
- const state_type& get_current_state( void ) const
- {
- return m_current_state_x1 ? m_x1.m_v : m_x2.m_v ;
- }
-
- state_type& get_old_state( void )
- {
- return m_current_state_x1 ? m_x2.m_v : m_x1.m_v ;
- }
-
- const state_type& get_old_state( void ) const
- {
- return m_current_state_x1 ? m_x2.m_v : m_x1.m_v ;
- }
- deriv_type& get_current_deriv( void )
- {
- return m_current_state_x1 ? m_dxdt1.m_v : m_dxdt2.m_v ;
- }
-
- const deriv_type& get_current_deriv( void ) const
- {
- return m_current_state_x1 ? m_dxdt1.m_v : m_dxdt2.m_v ;
- }
-
- deriv_type& get_old_deriv( void )
- {
- return m_current_state_x1 ? m_dxdt2.m_v : m_dxdt1.m_v ;
- }
-
- const deriv_type& get_old_deriv( void ) const
- {
- return m_current_state_x1 ? m_dxdt2.m_v : m_dxdt1.m_v ;
- }
-
- void toggle_current_state( void )
- {
- m_current_state_x1 = ! m_current_state_x1;
- }
- default_error_checker< value_type, algebra_type , operations_type > m_error_checker;
- modified_midpoint_dense_out< state_type , value_type , deriv_type , time_type , algebra_type , operations_type , resizer_type > m_midpoint;
- bool m_control_interpolation;
- bool m_last_step_rejected;
- bool m_first;
- time_type m_t;
- time_type m_dt;
- time_type m_dt_last;
- time_type m_t_last;
- size_t m_current_k_opt;
- size_t m_k_final;
- algebra_type m_algebra;
- resizer_type m_resizer;
- wrapped_state_type m_x1 , m_x2;
- wrapped_deriv_type m_dxdt1 , m_dxdt2;
- wrapped_state_type m_err;
- bool m_current_state_x1;
- value_vector m_error; // errors of repeated midpoint steps and extrapolations
- int_vector m_interval_sequence; // stores the successive interval counts
- value_matrix m_coeff;
- int_vector m_cost; // costs for interval count
- value_vector m_facmin_table; // for precomputed facmin to save pow calls
- state_vector_type m_table; // sequence of states for extrapolation
- //for dense output:
- state_vector_type m_mp_states; // sequence of approximations of x at distance center
- deriv_table_type m_derivs; // table of function values
- deriv_table_type m_diffs; // table of function values
- //wrapped_state_type m_a1 , m_a2 , m_a3 , m_a4;
- value_type STEPFAC1 , STEPFAC2 , STEPFAC3 , STEPFAC4 , KFAC1 , KFAC2;
- };
- /********** DOXYGEN **********/
- /**
- * \class bulirsch_stoer_dense_out
- * \brief The Bulirsch-Stoer algorithm.
- *
- * The Bulirsch-Stoer is a controlled stepper that adjusts both step size
- * and order of the method. The algorithm uses the modified midpoint and
- * a polynomial extrapolation compute the solution. This class also provides
- * dense output facility.
- *
- * \tparam State The state type.
- * \tparam Value The value type.
- * \tparam Deriv The type representing the time derivative of the state.
- * \tparam Time The time representing the independent variable - the time.
- * \tparam Algebra The algebra type.
- * \tparam Operations The operations type.
- * \tparam Resizer The resizer policy type.
- */
- /**
- * \fn bulirsch_stoer_dense_out::bulirsch_stoer_dense_out( value_type eps_abs , value_type eps_rel , value_type factor_x , value_type factor_dxdt , bool control_interpolation )
- * \brief Constructs the bulirsch_stoer class, including initialization of
- * the error bounds.
- *
- * \param eps_abs Absolute tolerance level.
- * \param eps_rel Relative tolerance level.
- * \param factor_x Factor for the weight of the state.
- * \param factor_dxdt Factor for the weight of the derivative.
- * \param control_interpolation Set true to additionally control the error of
- * the interpolation.
- */
- /**
- * \fn bulirsch_stoer_dense_out::try_step( System system , const StateIn &in , const DerivIn &dxdt , time_type &t , StateOut &out , DerivOut &dxdt_new , time_type &dt )
- * \brief Tries to perform one step.
- *
- * This method tries to do one step with step size dt. If the error estimate
- * is to large, the step is rejected and the method returns fail and the
- * step size dt is reduced. If the error estimate is acceptably small, the
- * step is performed, success is returned and dt might be increased to make
- * the steps as large as possible. This method also updates t if a step is
- * performed. Also, the internal order of the stepper is adjusted if required.
- *
- * \param system The system function to solve, hence the r.h.s. of the ODE.
- * It must fulfill the Simple System concept.
- * \param in The state of the ODE which should be solved.
- * \param dxdt The derivative of state.
- * \param t The value of the time. Updated if the step is successful.
- * \param out Used to store the result of the step.
- * \param dt The step size. Updated.
- * \return success if the step was accepted, fail otherwise.
- */
- /**
- * \fn bulirsch_stoer_dense_out::initialize( const StateType &x0 , const time_type &t0 , const time_type &dt0 )
- * \brief Initializes the dense output stepper.
- *
- * \param x0 The initial state.
- * \param t0 The initial time.
- * \param dt0 The initial time step.
- */
- /**
- * \fn bulirsch_stoer_dense_out::do_step( System system )
- * \brief Does one time step. This is the main method that should be used to
- * integrate an ODE with this stepper.
- * \note initialize has to be called before using this method to set the
- * initial conditions x,t and the stepsize.
- * \param system The system function to solve, hence the r.h.s. of the
- * ordinary differential equation. It must fulfill the Simple System concept.
- * \return Pair with start and end time of the integration step.
- */
- /**
- * \fn bulirsch_stoer_dense_out::calc_state( time_type t , StateOut &x ) const
- * \brief Calculates the solution at an intermediate point within the last step
- * \param t The time at which the solution should be calculated, has to be
- * in the current time interval.
- * \param x The output variable where the result is written into.
- */
- /**
- * \fn bulirsch_stoer_dense_out::current_state( void ) const
- * \brief Returns the current state of the solution.
- * \return The current state of the solution x(t).
- */
- /**
- * \fn bulirsch_stoer_dense_out::current_time( void ) const
- * \brief Returns the current time of the solution.
- * \return The current time of the solution t.
- */
- /**
- * \fn bulirsch_stoer_dense_out::previous_state( void ) const
- * \brief Returns the last state of the solution.
- * \return The last state of the solution x(t-dt).
- */
- /**
- * \fn bulirsch_stoer_dense_out::previous_time( void ) const
- * \brief Returns the last time of the solution.
- * \return The last time of the solution t-dt.
- */
- /**
- * \fn bulirsch_stoer_dense_out::current_time_step( void ) const
- * \brief Returns the current step size.
- * \return The current step size.
- */
- /**
- * \fn bulirsch_stoer_dense_out::adjust_size( const StateIn &x )
- * \brief Adjust the size of all temporaries in the stepper manually.
- * \param x A state from which the size of the temporaries to be resized is deduced.
- */
- }
- }
- }
- #endif // BOOST_NUMERIC_ODEINT_STEPPER_BULIRSCH_STOER_HPP_INCLUDED
|