123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495 |
- // (C) Copyright John Maddock 2006.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_SF_ERF_INV_HPP
- #define BOOST_MATH_SF_ERF_INV_HPP
- #ifdef _MSC_VER
- #pragma once
- #pragma warning(push)
- #pragma warning(disable:4127) // Conditional expression is constant
- #pragma warning(disable:4702) // Unreachable code: optimization warning
- #endif
- #include <type_traits>
- namespace boost{ namespace math{
- namespace detail{
- //
- // The inverse erf and erfc functions share a common implementation,
- // this version is for 80-bit long double's and smaller:
- //
- template <class T, class Policy>
- T erf_inv_imp(const T& p, const T& q, const Policy&, const std::integral_constant<int, 64>*)
- {
- BOOST_MATH_STD_USING // for ADL of std names.
- T result = 0;
- if(p <= 0.5)
- {
- //
- // Evaluate inverse erf using the rational approximation:
- //
- // x = p(p+10)(Y+R(p))
- //
- // Where Y is a constant, and R(p) is optimised for a low
- // absolute error compared to |Y|.
- //
- // double: Max error found: 2.001849e-18
- // long double: Max error found: 1.017064e-20
- // Maximum Deviation Found (actual error term at infinite precision) 8.030e-21
- //
- // LCOV_EXCL_START
- static const float Y = 0.0891314744949340820313f;
- static const T P[] = {
- BOOST_MATH_BIG_CONSTANT(T, 64, -0.000508781949658280665617),
- BOOST_MATH_BIG_CONSTANT(T, 64, -0.00836874819741736770379),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.0334806625409744615033),
- BOOST_MATH_BIG_CONSTANT(T, 64, -0.0126926147662974029034),
- BOOST_MATH_BIG_CONSTANT(T, 64, -0.0365637971411762664006),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.0219878681111168899165),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.00822687874676915743155),
- BOOST_MATH_BIG_CONSTANT(T, 64, -0.00538772965071242932965)
- };
- static const T Q[] = {
- BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
- BOOST_MATH_BIG_CONSTANT(T, 64, -0.970005043303290640362),
- BOOST_MATH_BIG_CONSTANT(T, 64, -1.56574558234175846809),
- BOOST_MATH_BIG_CONSTANT(T, 64, 1.56221558398423026363),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.662328840472002992063),
- BOOST_MATH_BIG_CONSTANT(T, 64, -0.71228902341542847553),
- BOOST_MATH_BIG_CONSTANT(T, 64, -0.0527396382340099713954),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.0795283687341571680018),
- BOOST_MATH_BIG_CONSTANT(T, 64, -0.00233393759374190016776),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.000886216390456424707504)
- };
- // LCOV_EXCL_STOP
- T g = p * (p + 10);
- T r = tools::evaluate_polynomial(P, p) / tools::evaluate_polynomial(Q, p);
- result = g * Y + g * r;
- }
- else if(q >= 0.25)
- {
- //
- // Rational approximation for 0.5 > q >= 0.25
- //
- // x = sqrt(-2*log(q)) / (Y + R(q))
- //
- // Where Y is a constant, and R(q) is optimised for a low
- // absolute error compared to Y.
- //
- // double : Max error found: 7.403372e-17
- // long double : Max error found: 6.084616e-20
- // Maximum Deviation Found (error term) 4.811e-20
- //
- // LCOV_EXCL_START
- static const float Y = 2.249481201171875f;
- static const T P[] = {
- BOOST_MATH_BIG_CONSTANT(T, 64, -0.202433508355938759655),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.105264680699391713268),
- BOOST_MATH_BIG_CONSTANT(T, 64, 8.37050328343119927838),
- BOOST_MATH_BIG_CONSTANT(T, 64, 17.6447298408374015486),
- BOOST_MATH_BIG_CONSTANT(T, 64, -18.8510648058714251895),
- BOOST_MATH_BIG_CONSTANT(T, 64, -44.6382324441786960818),
- BOOST_MATH_BIG_CONSTANT(T, 64, 17.445385985570866523),
- BOOST_MATH_BIG_CONSTANT(T, 64, 21.1294655448340526258),
- BOOST_MATH_BIG_CONSTANT(T, 64, -3.67192254707729348546)
- };
- static const T Q[] = {
- BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
- BOOST_MATH_BIG_CONSTANT(T, 64, 6.24264124854247537712),
- BOOST_MATH_BIG_CONSTANT(T, 64, 3.9713437953343869095),
- BOOST_MATH_BIG_CONSTANT(T, 64, -28.6608180499800029974),
- BOOST_MATH_BIG_CONSTANT(T, 64, -20.1432634680485188801),
- BOOST_MATH_BIG_CONSTANT(T, 64, 48.5609213108739935468),
- BOOST_MATH_BIG_CONSTANT(T, 64, 10.8268667355460159008),
- BOOST_MATH_BIG_CONSTANT(T, 64, -22.6436933413139721736),
- BOOST_MATH_BIG_CONSTANT(T, 64, 1.72114765761200282724)
- };
- // LCOV_EXCL_STOP
- T g = sqrt(-2 * log(q));
- T xs = q - 0.25f;
- T r = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
- result = g / (Y + r);
- }
- else
- {
- //
- // For q < 0.25 we have a series of rational approximations all
- // of the general form:
- //
- // let: x = sqrt(-log(q))
- //
- // Then the result is given by:
- //
- // x(Y+R(x-B))
- //
- // where Y is a constant, B is the lowest value of x for which
- // the approximation is valid, and R(x-B) is optimised for a low
- // absolute error compared to Y.
- //
- // Note that almost all code will really go through the first
- // or maybe second approximation. After than we're dealing with very
- // small input values indeed: 80 and 128 bit long double's go all the
- // way down to ~ 1e-5000 so the "tail" is rather long...
- //
- T x = sqrt(-log(q));
- if(x < 3)
- {
- // LCOV_EXCL_START
- // Max error found: 1.089051e-20
- static const float Y = 0.807220458984375f;
- static const T P[] = {
- BOOST_MATH_BIG_CONSTANT(T, 64, -0.131102781679951906451),
- BOOST_MATH_BIG_CONSTANT(T, 64, -0.163794047193317060787),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.117030156341995252019),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.387079738972604337464),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.337785538912035898924),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.142869534408157156766),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.0290157910005329060432),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.00214558995388805277169),
- BOOST_MATH_BIG_CONSTANT(T, 64, -0.679465575181126350155e-6),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.285225331782217055858e-7),
- BOOST_MATH_BIG_CONSTANT(T, 64, -0.681149956853776992068e-9)
- };
- static const T Q[] = {
- BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
- BOOST_MATH_BIG_CONSTANT(T, 64, 3.46625407242567245975),
- BOOST_MATH_BIG_CONSTANT(T, 64, 5.38168345707006855425),
- BOOST_MATH_BIG_CONSTANT(T, 64, 4.77846592945843778382),
- BOOST_MATH_BIG_CONSTANT(T, 64, 2.59301921623620271374),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.848854343457902036425),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.152264338295331783612),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.01105924229346489121)
- };
- // LCOV_EXCL_STOP
- T xs = x - 1.125f;
- T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
- result = Y * x + R * x;
- }
- else if(x < 6)
- {
- // LCOV_EXCL_START
- // Max error found: 8.389174e-21
- static const float Y = 0.93995571136474609375f;
- static const T P[] = {
- BOOST_MATH_BIG_CONSTANT(T, 64, -0.0350353787183177984712),
- BOOST_MATH_BIG_CONSTANT(T, 64, -0.00222426529213447927281),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.0185573306514231072324),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.00950804701325919603619),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.00187123492819559223345),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.000157544617424960554631),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.460469890584317994083e-5),
- BOOST_MATH_BIG_CONSTANT(T, 64, -0.230404776911882601748e-9),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.266339227425782031962e-11)
- };
- static const T Q[] = {
- BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
- BOOST_MATH_BIG_CONSTANT(T, 64, 1.3653349817554063097),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.762059164553623404043),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.220091105764131249824),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.0341589143670947727934),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.00263861676657015992959),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.764675292302794483503e-4)
- };
- // LCOV_EXCL_STOP
- T xs = x - 3;
- T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
- result = Y * x + R * x;
- }
- else if(x < 18)
- {
- // LCOV_EXCL_START
- // Max error found: 1.481312e-19
- static const float Y = 0.98362827301025390625f;
- static const T P[] = {
- BOOST_MATH_BIG_CONSTANT(T, 64, -0.0167431005076633737133),
- BOOST_MATH_BIG_CONSTANT(T, 64, -0.00112951438745580278863),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.00105628862152492910091),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.000209386317487588078668),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.149624783758342370182e-4),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.449696789927706453732e-6),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.462596163522878599135e-8),
- BOOST_MATH_BIG_CONSTANT(T, 64, -0.281128735628831791805e-13),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.99055709973310326855e-16)
- };
- static const T Q[] = {
- BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.591429344886417493481),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.138151865749083321638),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.0160746087093676504695),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.000964011807005165528527),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.275335474764726041141e-4),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.282243172016108031869e-6)
- };
- // LCOV_EXCL_STOP
- T xs = x - 6;
- T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
- result = Y * x + R * x;
- }
- else if(x < 44)
- {
- // LCOV_EXCL_START
- // Max error found: 5.697761e-20
- static const float Y = 0.99714565277099609375f;
- static const T P[] = {
- BOOST_MATH_BIG_CONSTANT(T, 64, -0.0024978212791898131227),
- BOOST_MATH_BIG_CONSTANT(T, 64, -0.779190719229053954292e-5),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.254723037413027451751e-4),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.162397777342510920873e-5),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.396341011304801168516e-7),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.411632831190944208473e-9),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.145596286718675035587e-11),
- BOOST_MATH_BIG_CONSTANT(T, 64, -0.116765012397184275695e-17)
- };
- static const T Q[] = {
- BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.207123112214422517181),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.0169410838120975906478),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.000690538265622684595676),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.145007359818232637924e-4),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.144437756628144157666e-6),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.509761276599778486139e-9)
- };
- // LCOV_EXCL_STOP
- T xs = x - 18;
- T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
- result = Y * x + R * x;
- }
- else
- {
- // LCOV_EXCL_START
- // Max error found: 1.279746e-20
- static const float Y = 0.99941349029541015625f;
- static const T P[] = {
- BOOST_MATH_BIG_CONSTANT(T, 64, -0.000539042911019078575891),
- BOOST_MATH_BIG_CONSTANT(T, 64, -0.28398759004727721098e-6),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.899465114892291446442e-6),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.229345859265920864296e-7),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.225561444863500149219e-9),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.947846627503022684216e-12),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.135880130108924861008e-14),
- BOOST_MATH_BIG_CONSTANT(T, 64, -0.348890393399948882918e-21)
- };
- static const T Q[] = {
- BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.0845746234001899436914),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.00282092984726264681981),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.468292921940894236786e-4),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.399968812193862100054e-6),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.161809290887904476097e-8),
- BOOST_MATH_BIG_CONSTANT(T, 64, 0.231558608310259605225e-11)
- };
- // LCOV_EXCL_STOP
- T xs = x - 44;
- T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
- result = Y * x + R * x;
- }
- }
- return result;
- }
- template <class T, class Policy>
- struct erf_roots
- {
- boost::math::tuple<T,T,T> operator()(const T& guess)
- {
- BOOST_MATH_STD_USING
- T derivative = sign * (2 / sqrt(constants::pi<T>())) * exp(-(guess * guess));
- T derivative2 = -2 * guess * derivative;
- return boost::math::make_tuple(((sign > 0) ? static_cast<T>(boost::math::erf(guess, Policy()) - target) : static_cast<T>(boost::math::erfc(guess, Policy())) - target), derivative, derivative2);
- }
- erf_roots(T z, int s) : target(z), sign(s) {}
- private:
- T target;
- int sign;
- };
- template <class T, class Policy>
- T erf_inv_imp(const T& p, const T& q, const Policy& pol, const std::integral_constant<int, 0>*)
- {
- //
- // Generic version, get a guess that's accurate to 64-bits (10^-19)
- //
- T guess = erf_inv_imp(p, q, pol, static_cast<std::integral_constant<int, 64> const*>(nullptr));
- T result;
- //
- // If T has more bit's than 64 in it's mantissa then we need to iterate,
- // otherwise we can just return the result:
- //
- if(policies::digits<T, Policy>() > 64)
- {
- std::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
- if(p <= 0.5)
- {
- result = tools::halley_iterate(detail::erf_roots<typename std::remove_cv<T>::type, Policy>(p, 1), guess, static_cast<T>(0), tools::max_value<T>(), (policies::digits<T, Policy>() * 2) / 3, max_iter);
- }
- else
- {
- result = tools::halley_iterate(detail::erf_roots<typename std::remove_cv<T>::type, Policy>(q, -1), guess, static_cast<T>(0), tools::max_value<T>(), (policies::digits<T, Policy>() * 2) / 3, max_iter);
- }
- policies::check_root_iterations<T>("boost::math::erf_inv<%1%>", max_iter, pol);
- }
- else
- {
- result = guess;
- }
- return result;
- }
- } // namespace detail
- template <class T, class Policy>
- typename tools::promote_args<T>::type erfc_inv(T z, const Policy& pol)
- {
- typedef typename tools::promote_args<T>::type result_type;
- //
- // Begin by testing for domain errors, and other special cases:
- //
- static const char* function = "boost::math::erfc_inv<%1%>(%1%, %1%)";
- if((z < 0) || (z > 2))
- return policies::raise_domain_error<result_type>(function, "Argument outside range [0,2] in inverse erfc function (got p=%1%).", z, pol);
- if(z == 0)
- return policies::raise_overflow_error<result_type>(function, nullptr, pol);
- if(z == 2)
- return -policies::raise_overflow_error<result_type>(function, nullptr, pol);
- //
- // Normalise the input, so it's in the range [0,1], we will
- // negate the result if z is outside that range. This is a simple
- // application of the erfc reflection formula: erfc(-z) = 2 - erfc(z)
- //
- result_type p, q, s;
- if(z > 1)
- {
- q = 2 - z;
- p = 1 - q;
- s = -1;
- }
- else
- {
- p = 1 - z;
- q = z;
- s = 1;
- }
- //
- // A bit of meta-programming to figure out which implementation
- // to use, based on the number of bits in the mantissa of T:
- //
- typedef typename policies::precision<result_type, Policy>::type precision_type;
- typedef std::integral_constant<int,
- precision_type::value <= 0 ? 0 :
- precision_type::value <= 64 ? 64 : 0
- > tag_type;
- //
- // Likewise use internal promotion, so we evaluate at a higher
- // precision internally if it's appropriate:
- //
- typedef typename policies::evaluation<result_type, Policy>::type eval_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- //
- // And get the result, negating where required:
- //
- return s * policies::checked_narrowing_cast<result_type, forwarding_policy>(
- detail::erf_inv_imp(static_cast<eval_type>(p), static_cast<eval_type>(q), forwarding_policy(), static_cast<tag_type const*>(nullptr)), function);
- }
- template <class T, class Policy>
- typename tools::promote_args<T>::type erf_inv(T z, const Policy& pol)
- {
- typedef typename tools::promote_args<T>::type result_type;
- //
- // Begin by testing for domain errors, and other special cases:
- //
- static const char* function = "boost::math::erf_inv<%1%>(%1%, %1%)";
- if((z < -1) || (z > 1))
- return policies::raise_domain_error<result_type>(function, "Argument outside range [-1, 1] in inverse erf function (got p=%1%).", z, pol);
- if(z == 1)
- return policies::raise_overflow_error<result_type>(function, nullptr, pol);
- if(z == -1)
- return -policies::raise_overflow_error<result_type>(function, nullptr, pol);
- if(z == 0)
- return 0;
- //
- // Normalise the input, so it's in the range [0,1], we will
- // negate the result if z is outside that range. This is a simple
- // application of the erf reflection formula: erf(-z) = -erf(z)
- //
- result_type p, q, s;
- if(z < 0)
- {
- p = -z;
- q = 1 - p;
- s = -1;
- }
- else
- {
- p = z;
- q = 1 - z;
- s = 1;
- }
- //
- // A bit of meta-programming to figure out which implementation
- // to use, based on the number of bits in the mantissa of T:
- //
- typedef typename policies::precision<result_type, Policy>::type precision_type;
- typedef std::integral_constant<int,
- precision_type::value <= 0 ? 0 :
- precision_type::value <= 64 ? 64 : 0
- > tag_type;
- //
- // Likewise use internal promotion, so we evaluate at a higher
- // precision internally if it's appropriate:
- //
- typedef typename policies::evaluation<result_type, Policy>::type eval_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- //
- // Likewise use internal promotion, so we evaluate at a higher
- // precision internally if it's appropriate:
- //
- typedef typename policies::evaluation<result_type, Policy>::type eval_type;
- //
- // And get the result, negating where required:
- //
- return s * policies::checked_narrowing_cast<result_type, forwarding_policy>(
- detail::erf_inv_imp(static_cast<eval_type>(p), static_cast<eval_type>(q), forwarding_policy(), static_cast<tag_type const*>(nullptr)), function);
- }
- template <class T>
- inline typename tools::promote_args<T>::type erfc_inv(T z)
- {
- return erfc_inv(z, policies::policy<>());
- }
- template <class T>
- inline typename tools::promote_args<T>::type erf_inv(T z)
- {
- return erf_inv(z, policies::policy<>());
- }
- } // namespace math
- } // namespace boost
- #ifdef _MSC_VER
- #pragma warning(pop)
- #endif
- #endif // BOOST_MATH_SF_ERF_INV_HPP
|