123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- // Copyright (c) 2006 Xiaogang Zhang
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_BESSEL_YN_HPP
- #define BOOST_MATH_BESSEL_YN_HPP
- #ifdef _MSC_VER
- #pragma once
- #endif
- #include <boost/math/special_functions/detail/bessel_y0.hpp>
- #include <boost/math/special_functions/detail/bessel_y1.hpp>
- #include <boost/math/special_functions/detail/bessel_jy_series.hpp>
- #include <boost/math/policies/error_handling.hpp>
- // Bessel function of the second kind of integer order
- // Y_n(z) is the dominant solution, forward recurrence always OK (though unstable)
- namespace boost { namespace math { namespace detail{
- template <typename T, typename Policy>
- T bessel_yn(int n, T x, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- T value, factor, current, prev;
- using namespace boost::math::tools;
- static const char* function = "boost::math::bessel_yn<%1%>(%1%,%1%)";
- if ((x == 0) && (n == 0))
- {
- return -policies::raise_overflow_error<T>(function, nullptr, pol);
- }
- if (x <= 0)
- {
- return policies::raise_domain_error<T>(function, "Got x = %1%, but x must be > 0, complex result not supported.", x, pol);
- }
- //
- // Reflection comes first:
- //
- if (n < 0)
- {
- factor = static_cast<T>((n & 0x1) ? -1 : 1); // Y_{-n}(z) = (-1)^n Y_n(z)
- n = -n;
- }
- else
- {
- factor = 1;
- }
- if(x < policies::get_epsilon<T, Policy>())
- {
- T scale = 1;
- value = bessel_yn_small_z(n, x, &scale, pol);
- if (tools::max_value<T>() * fabs(scale) < fabs(value))
- return boost::math::sign(scale) * boost::math::sign(value) * policies::raise_overflow_error<T>(function, nullptr, pol);
- value /= scale;
- }
- else if(asymptotic_bessel_large_x_limit(n, x))
- {
- value = factor * asymptotic_bessel_y_large_x_2(static_cast<T>(abs(n)), x, pol);
- }
- else if (n == 0)
- {
- value = bessel_y0(x, pol);
- }
- else if (n == 1)
- {
- value = factor * bessel_y1(x, pol);
- }
- else
- {
- prev = bessel_y0(x, pol);
- current = bessel_y1(x, pol);
- int k = 1;
- BOOST_MATH_ASSERT(k < n);
- policies::check_series_iterations<T>("boost::math::bessel_y_n<%1%>(%1%,%1%)", n, pol);
- T mult = 2 * k / x;
- value = mult * current - prev;
- prev = current;
- current = value;
- ++k;
- if((mult > 1) && (fabs(current) > 1))
- {
- prev /= current;
- factor /= current;
- value /= current;
- current = 1;
- }
- while(k < n)
- {
- mult = 2 * k / x;
- value = mult * current - prev;
- prev = current;
- current = value;
- ++k;
- }
- if (fabs(tools::max_value<T>() * factor) < fabs(value))
- return sign(value) * sign(factor) * policies::raise_overflow_error<T>(function, nullptr, pol);
- value /= factor;
- }
- return value;
- }
- }}} // namespaces
- #endif // BOOST_MATH_BESSEL_YN_HPP
|