123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207 |
- // Copyright (c) 2006 Xiaogang Zhang
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_BESSEL_J1_HPP
- #define BOOST_MATH_BESSEL_J1_HPP
- #ifdef _MSC_VER
- #pragma once
- #endif
- #include <boost/math/constants/constants.hpp>
- #include <boost/math/tools/rational.hpp>
- #include <boost/math/tools/big_constant.hpp>
- #include <boost/math/tools/assert.hpp>
- #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128)
- //
- // This is the only way we can avoid
- // warning: non-standard suffix on floating constant [-Wpedantic]
- // when building with -Wall -pedantic. Neither __extension__
- // nor #pragma diagnostic ignored work :(
- //
- #pragma GCC system_header
- #endif
- // Bessel function of the first kind of order one
- // x <= 8, minimax rational approximations on root-bracketing intervals
- // x > 8, Hankel asymptotic expansion in Hart, Computer Approximations, 1968
- namespace boost { namespace math{ namespace detail{
- template <typename T>
- T bessel_j1(T x);
- template <class T>
- struct bessel_j1_initializer
- {
- struct init
- {
- init()
- {
- do_init();
- }
- static void do_init()
- {
- bessel_j1(T(1));
- }
- void force_instantiate()const{}
- };
- static const init initializer;
- static void force_instantiate()
- {
- initializer.force_instantiate();
- }
- };
- template <class T>
- const typename bessel_j1_initializer<T>::init bessel_j1_initializer<T>::initializer;
- template <typename T>
- T bessel_j1(T x)
- {
- bessel_j1_initializer<T>::force_instantiate();
- static const T P1[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4258509801366645672e+11)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6781041261492395835e+09)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1548696764841276794e+08)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.8062904098958257677e+05)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4615792982775076130e+03)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0650724020080236441e+01)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0767857011487300348e-02))
- };
- static const T Q1[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1868604460820175290e+12)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.2091902282580133541e+10)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.0228375140097033958e+08)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.9117614494174794095e+05)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0742272239517380498e+03)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0))
- };
- static const T P2[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.7527881995806511112e+16)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.6608531731299018674e+15)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.6658018905416665164e+13)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5580665670910619166e+11)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8113931269860667829e+09)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.0793266148011179143e+06)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -7.5023342220781607561e+03)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.6179191852758252278e+00))
- };
- static const T Q2[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7253905888447681194e+18)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7128800897135812012e+16)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.4899346165481429307e+13)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.7622777286244082666e+11)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.4872502899596389593e+08)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1267125065029138050e+06)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3886978985861357615e+03)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
- };
- static const T PC[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4357578167941278571e+06)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -9.9422465050776411957e+06)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.6033732483649391093e+06)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5235293511811373833e+06)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0982405543459346727e+05)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.6116166443246101165e+03)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0))
- };
- static const T QC[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4357578167941278568e+06)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -9.9341243899345856590e+06)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.5853394797230870728e+06)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5118095066341608816e+06)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0726385991103820119e+05)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4550094401904961825e+03)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
- };
- static const T PS[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.3220913409857223519e+04)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.5145160675335701966e+04)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6178836581270835179e+04)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8494262873223866797e+04)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7063754290207680021e+03)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5265133846636032186e+01)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0))
- };
- static const T QS[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.0871281941028743574e+05)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8194580422439972989e+06)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4194606696037208929e+06)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0029443582266975117e+05)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.7890229745772202641e+04)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.6383677696049909675e+02)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0))
- };
- static const T x1 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.8317059702075123156e+00)),
- x2 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.0155866698156187535e+00)),
- x11 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.810e+02)),
- x12 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.2527979248768438556e-04)),
- x21 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7960e+03)),
- x22 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.8330184381246462950e-05));
- T value, factor, r, rc, rs, w;
- BOOST_MATH_STD_USING
- using namespace boost::math::tools;
- using namespace boost::math::constants;
- w = abs(x);
- if (x == 0)
- {
- return static_cast<T>(0);
- }
- if (w <= 4) // w in (0, 4]
- {
- T y = x * x;
- BOOST_MATH_ASSERT(sizeof(P1) == sizeof(Q1));
- r = evaluate_rational(P1, Q1, y);
- factor = w * (w + x1) * ((w - x11/256) - x12);
- value = factor * r;
- }
- else if (w <= 8) // w in (4, 8]
- {
- T y = x * x;
- BOOST_MATH_ASSERT(sizeof(P2) == sizeof(Q2));
- r = evaluate_rational(P2, Q2, y);
- factor = w * (w + x2) * ((w - x21/256) - x22);
- value = factor * r;
- }
- else // w in (8, \infty)
- {
- T y = 8 / w;
- T y2 = y * y;
- BOOST_MATH_ASSERT(sizeof(PC) == sizeof(QC));
- BOOST_MATH_ASSERT(sizeof(PS) == sizeof(QS));
- rc = evaluate_rational(PC, QC, y2);
- rs = evaluate_rational(PS, QS, y2);
- factor = 1 / (sqrt(w) * constants::root_pi<T>());
- //
- // What follows is really just:
- //
- // T z = w - 0.75f * pi<T>();
- // value = factor * (rc * cos(z) - y * rs * sin(z));
- //
- // but using the sin/cos addition rules plus constants
- // for the values of sin/cos of 3PI/4 which then cancel
- // out with corresponding terms in "factor".
- //
- T sx = sin(x);
- T cx = cos(x);
- value = factor * (rc * (sx - cx) + y * rs * (sx + cx));
- }
- BOOST_MATH_ASSERT(x >= 0); // Negative values handled by the caller.
- return value;
- }
- }}} // namespaces
- #endif // BOOST_MATH_BESSEL_J1_HPP
|