bessel_i0.hpp 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546
  1. // Copyright (c) 2006 Xiaogang Zhang
  2. // Copyright (c) 2017 John Maddock
  3. // Use, modification and distribution are subject to the
  4. // Boost Software License, Version 1.0. (See accompanying file
  5. // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
  6. #ifndef BOOST_MATH_BESSEL_I0_HPP
  7. #define BOOST_MATH_BESSEL_I0_HPP
  8. #ifdef _MSC_VER
  9. #pragma once
  10. #endif
  11. #include <boost/math/tools/rational.hpp>
  12. #include <boost/math/tools/big_constant.hpp>
  13. #include <boost/math/tools/assert.hpp>
  14. #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128)
  15. //
  16. // This is the only way we can avoid
  17. // warning: non-standard suffix on floating constant [-Wpedantic]
  18. // when building with -Wall -pedantic. Neither __extension__
  19. // nor #pragma diagnostic ignored work :(
  20. //
  21. #pragma GCC system_header
  22. #endif
  23. // Modified Bessel function of the first kind of order zero
  24. // we use the approximating forms derived in:
  25. // "Rational Approximations for the Modified Bessel Function of the First Kind - I0(x) for Computations with Double Precision"
  26. // by Pavel Holoborodko,
  27. // see http://www.advanpix.com/2015/11/11/rational-approximations-for-the-modified-bessel-function-of-the-first-kind-i0-computations-double-precision
  28. // The actual coefficients used are our own, and extend Pavel's work to precision's other than double.
  29. namespace boost { namespace math { namespace detail{
  30. template <typename T>
  31. T bessel_i0(const T& x);
  32. template <typename T, int N>
  33. T bessel_i0_imp(const T&, const std::integral_constant<int, N>&)
  34. {
  35. BOOST_MATH_ASSERT(0);
  36. return 0;
  37. }
  38. template <typename T>
  39. T bessel_i0_imp(const T& x, const std::integral_constant<int, 24>&)
  40. {
  41. BOOST_MATH_STD_USING
  42. if(x < 7.75)
  43. {
  44. // Max error in interpolated form: 3.929e-08
  45. // Max Error found at float precision = Poly: 1.991226e-07
  46. static const float P[] = {
  47. 1.00000003928615375e+00f,
  48. 2.49999576572179639e-01f,
  49. 2.77785268558399407e-02f,
  50. 1.73560257755821695e-03f,
  51. 6.96166518788906424e-05f,
  52. 1.89645733877137904e-06f,
  53. 4.29455004657565361e-08f,
  54. 3.90565476357034480e-10f,
  55. 1.48095934745267240e-11f
  56. };
  57. T a = x * x / 4;
  58. return a * boost::math::tools::evaluate_polynomial(P, a) + 1;
  59. }
  60. else if(x < 50)
  61. {
  62. // Max error in interpolated form: 5.195e-08
  63. // Max Error found at float precision = Poly: 8.502534e-08
  64. static const float P[] = {
  65. 3.98942651588301770e-01f,
  66. 4.98327234176892844e-02f,
  67. 2.91866904423115499e-02f,
  68. 1.35614940793742178e-02f,
  69. 1.31409251787866793e-01f
  70. };
  71. return exp(x) * boost::math::tools::evaluate_polynomial(P, T(1 / x)) / sqrt(x);
  72. }
  73. else
  74. {
  75. // Max error in interpolated form: 1.782e-09
  76. // Max Error found at float precision = Poly: 6.473568e-08
  77. static const float P[] = {
  78. 3.98942391532752700e-01f,
  79. 4.98455950638200020e-02f,
  80. 2.94835666900682535e-02f
  81. };
  82. T ex = exp(x / 2);
  83. T result = ex * boost::math::tools::evaluate_polynomial(P, T(1 / x)) / sqrt(x);
  84. result *= ex;
  85. return result;
  86. }
  87. }
  88. template <typename T>
  89. T bessel_i0_imp(const T& x, const std::integral_constant<int, 53>&)
  90. {
  91. BOOST_MATH_STD_USING
  92. if(x < 7.75)
  93. {
  94. // Bessel I0 over[10 ^ -16, 7.75]
  95. // Max error in interpolated form : 3.042e-18
  96. // Max Error found at double precision = Poly : 5.106609e-16 Cheb : 5.239199e-16
  97. static const double P[] = {
  98. 1.00000000000000000e+00,
  99. 2.49999999999999909e-01,
  100. 2.77777777777782257e-02,
  101. 1.73611111111023792e-03,
  102. 6.94444444453352521e-05,
  103. 1.92901234513219920e-06,
  104. 3.93675991102510739e-08,
  105. 6.15118672704439289e-10,
  106. 7.59407002058973446e-12,
  107. 7.59389793369836367e-14,
  108. 6.27767773636292611e-16,
  109. 4.34709704153272287e-18,
  110. 2.63417742690109154e-20,
  111. 1.13943037744822825e-22,
  112. 9.07926920085624812e-25
  113. };
  114. T a = x * x / 4;
  115. return a * boost::math::tools::evaluate_polynomial(P, a) + 1;
  116. }
  117. else if(x < 500)
  118. {
  119. // Max error in interpolated form : 1.685e-16
  120. // Max Error found at double precision = Poly : 2.575063e-16 Cheb : 2.247615e+00
  121. static const double P[] = {
  122. 3.98942280401425088e-01,
  123. 4.98677850604961985e-02,
  124. 2.80506233928312623e-02,
  125. 2.92211225166047873e-02,
  126. 4.44207299493659561e-02,
  127. 1.30970574605856719e-01,
  128. -3.35052280231727022e+00,
  129. 2.33025711583514727e+02,
  130. -1.13366350697172355e+04,
  131. 4.24057674317867331e+05,
  132. -1.23157028595698731e+07,
  133. 2.80231938155267516e+08,
  134. -5.01883999713777929e+09,
  135. 7.08029243015109113e+10,
  136. -7.84261082124811106e+11,
  137. 6.76825737854096565e+12,
  138. -4.49034849696138065e+13,
  139. 2.24155239966958995e+14,
  140. -8.13426467865659318e+14,
  141. 2.02391097391687777e+15,
  142. -3.08675715295370878e+15,
  143. 2.17587543863819074e+15
  144. };
  145. return exp(x) * boost::math::tools::evaluate_polynomial(P, T(1 / x)) / sqrt(x);
  146. }
  147. else
  148. {
  149. // Max error in interpolated form : 2.437e-18
  150. // Max Error found at double precision = Poly : 1.216719e-16
  151. static const double P[] = {
  152. 3.98942280401432905e-01,
  153. 4.98677850491434560e-02,
  154. 2.80506308916506102e-02,
  155. 2.92179096853915176e-02,
  156. 4.53371208762579442e-02
  157. };
  158. T ex = exp(x / 2);
  159. T result = ex * boost::math::tools::evaluate_polynomial(P, T(1 / x)) / sqrt(x);
  160. result *= ex;
  161. return result;
  162. }
  163. }
  164. template <typename T>
  165. T bessel_i0_imp(const T& x, const std::integral_constant<int, 64>&)
  166. {
  167. BOOST_MATH_STD_USING
  168. if(x < 7.75)
  169. {
  170. // Bessel I0 over[10 ^ -16, 7.75]
  171. // Max error in interpolated form : 3.899e-20
  172. // Max Error found at float80 precision = Poly : 1.770840e-19
  173. // LCOV_EXCL_START
  174. static const T P[] = {
  175. BOOST_MATH_BIG_CONSTANT(T, 64, 9.99999999999999999961011629e-01),
  176. BOOST_MATH_BIG_CONSTANT(T, 64, 2.50000000000000001321873912e-01),
  177. BOOST_MATH_BIG_CONSTANT(T, 64, 2.77777777777777703400424216e-02),
  178. BOOST_MATH_BIG_CONSTANT(T, 64, 1.73611111111112764793802701e-03),
  179. BOOST_MATH_BIG_CONSTANT(T, 64, 6.94444444444251461247253525e-05),
  180. BOOST_MATH_BIG_CONSTANT(T, 64, 1.92901234569262206386118739e-06),
  181. BOOST_MATH_BIG_CONSTANT(T, 64, 3.93675988851131457141005209e-08),
  182. BOOST_MATH_BIG_CONSTANT(T, 64, 6.15118734688297476454205352e-10),
  183. BOOST_MATH_BIG_CONSTANT(T, 64, 7.59405797058091016449222685e-12),
  184. BOOST_MATH_BIG_CONSTANT(T, 64, 7.59406599631719800679835140e-14),
  185. BOOST_MATH_BIG_CONSTANT(T, 64, 6.27598961062070013516660425e-16),
  186. BOOST_MATH_BIG_CONSTANT(T, 64, 4.35920318970387940278362992e-18),
  187. BOOST_MATH_BIG_CONSTANT(T, 64, 2.57372492687715452949437981e-20),
  188. BOOST_MATH_BIG_CONSTANT(T, 64, 1.33908663475949906992942204e-22),
  189. BOOST_MATH_BIG_CONSTANT(T, 64, 5.15976668870980234582896010e-25),
  190. BOOST_MATH_BIG_CONSTANT(T, 64, 3.46240478946376069211156548e-27)
  191. };
  192. // LCOV_EXCL_STOP
  193. T a = x * x / 4;
  194. return a * boost::math::tools::evaluate_polynomial(P, a) + 1;
  195. }
  196. else if(x < 10)
  197. {
  198. // Maximum Deviation Found: 6.906e-21
  199. // Expected Error Term : -6.903e-21
  200. // Maximum Relative Change in Control Points : 1.631e-04
  201. // Max Error found at float80 precision = Poly : 7.811948e-21
  202. // LCOV_EXCL_START
  203. static const T Y = 4.051098823547363281250e-01f;
  204. static const T P[] = {
  205. BOOST_MATH_BIG_CONSTANT(T, 64, -6.158081780620616479492e-03),
  206. BOOST_MATH_BIG_CONSTANT(T, 64, 4.883635969834048766148e-02),
  207. BOOST_MATH_BIG_CONSTANT(T, 64, 7.892782002476195771920e-02),
  208. BOOST_MATH_BIG_CONSTANT(T, 64, -1.478784996478070170327e+00),
  209. BOOST_MATH_BIG_CONSTANT(T, 64, 2.988611837308006851257e+01),
  210. BOOST_MATH_BIG_CONSTANT(T, 64, -4.140133766747436806179e+02),
  211. BOOST_MATH_BIG_CONSTANT(T, 64, 4.117316447921276453271e+03),
  212. BOOST_MATH_BIG_CONSTANT(T, 64, -2.942353667455141676001e+04),
  213. BOOST_MATH_BIG_CONSTANT(T, 64, 1.493482682461387081534e+05),
  214. BOOST_MATH_BIG_CONSTANT(T, 64, -5.228100538921466124653e+05),
  215. BOOST_MATH_BIG_CONSTANT(T, 64, 1.195279248600467989454e+06),
  216. BOOST_MATH_BIG_CONSTANT(T, 64, -1.601530760654337045917e+06),
  217. BOOST_MATH_BIG_CONSTANT(T, 64, 9.504921137873298402679e+05)
  218. };
  219. // LCOV_EXCL_STOP
  220. return exp(x) * (boost::math::tools::evaluate_polynomial(P, T(1 / x)) + Y) / sqrt(x);
  221. }
  222. else if(x < 15)
  223. {
  224. // Maximum Deviation Found: 4.083e-21
  225. // Expected Error Term : -4.025e-21
  226. // Maximum Relative Change in Control Points : 1.304e-03
  227. // Max Error found at float80 precision = Poly : 2.303527e-20
  228. // LCOV_EXCL_START
  229. static const T Y = 4.033188819885253906250e-01f;
  230. static const T P[] = {
  231. BOOST_MATH_BIG_CONSTANT(T, 64, -4.376373876116109401062e-03),
  232. BOOST_MATH_BIG_CONSTANT(T, 64, 4.982899138682911273321e-02),
  233. BOOST_MATH_BIG_CONSTANT(T, 64, 3.109477529533515397644e-02),
  234. BOOST_MATH_BIG_CONSTANT(T, 64, -1.163760580110576407673e-01),
  235. BOOST_MATH_BIG_CONSTANT(T, 64, 4.776501832837367371883e+00),
  236. BOOST_MATH_BIG_CONSTANT(T, 64, -1.101478069227776656318e+02),
  237. BOOST_MATH_BIG_CONSTANT(T, 64, 1.892071912448960299773e+03),
  238. BOOST_MATH_BIG_CONSTANT(T, 64, -2.417739279982328117483e+04),
  239. BOOST_MATH_BIG_CONSTANT(T, 64, 2.296963447724067390552e+05),
  240. BOOST_MATH_BIG_CONSTANT(T, 64, -1.598589306710589358747e+06),
  241. BOOST_MATH_BIG_CONSTANT(T, 64, 7.903662411851774878322e+06),
  242. BOOST_MATH_BIG_CONSTANT(T, 64, -2.622677059040339516093e+07),
  243. BOOST_MATH_BIG_CONSTANT(T, 64, 5.227776578828667629347e+07),
  244. BOOST_MATH_BIG_CONSTANT(T, 64, -4.727797957441040896878e+07)
  245. };
  246. // LCOV_EXCL_STOP
  247. return exp(x) * (boost::math::tools::evaluate_polynomial(P, T(1 / x)) + Y) / sqrt(x);
  248. }
  249. else if(x < 50)
  250. {
  251. // Max error in interpolated form: 1.035e-21
  252. // Max Error found at float80 precision = Poly: 1.885872e-21
  253. // LCOV_EXCL_START
  254. static const T Y = 4.011702537536621093750e-01f;
  255. static const T P[] = {
  256. BOOST_MATH_BIG_CONSTANT(T, 64, -2.227973351806078464328e-03),
  257. BOOST_MATH_BIG_CONSTANT(T, 64, 4.986778486088017419036e-02),
  258. BOOST_MATH_BIG_CONSTANT(T, 64, 2.805066823812285310011e-02),
  259. BOOST_MATH_BIG_CONSTANT(T, 64, 2.921443721160964964623e-02),
  260. BOOST_MATH_BIG_CONSTANT(T, 64, 4.517504941996594744052e-02),
  261. BOOST_MATH_BIG_CONSTANT(T, 64, 6.316922639868793684401e-02),
  262. BOOST_MATH_BIG_CONSTANT(T, 64, 1.535891099168810015433e+00),
  263. BOOST_MATH_BIG_CONSTANT(T, 64, -4.706078229522448308087e+01),
  264. BOOST_MATH_BIG_CONSTANT(T, 64, 1.351015763079160914632e+03),
  265. BOOST_MATH_BIG_CONSTANT(T, 64, -2.948809013999277355098e+04),
  266. BOOST_MATH_BIG_CONSTANT(T, 64, 4.967598958582595361757e+05),
  267. BOOST_MATH_BIG_CONSTANT(T, 64, -6.346924657995383019558e+06),
  268. BOOST_MATH_BIG_CONSTANT(T, 64, 5.998794574259956613472e+07),
  269. BOOST_MATH_BIG_CONSTANT(T, 64, -4.016371355801690142095e+08),
  270. BOOST_MATH_BIG_CONSTANT(T, 64, 1.768791455631826490838e+09),
  271. BOOST_MATH_BIG_CONSTANT(T, 64, -4.441995678177349895640e+09),
  272. BOOST_MATH_BIG_CONSTANT(T, 64, 4.482292669974971387738e+09)
  273. };
  274. // LCOV_EXCL_STOP
  275. return exp(x) * (boost::math::tools::evaluate_polynomial(P, T(1 / x)) + Y) / sqrt(x);
  276. }
  277. else
  278. {
  279. // Bessel I0 over[50, INF]
  280. // Max error in interpolated form : 5.587e-20
  281. // Max Error found at float80 precision = Poly : 8.776852e-20
  282. // LCOV_EXCL_START
  283. static const T P[] = {
  284. BOOST_MATH_BIG_CONSTANT(T, 64, 3.98942280401432677955074061e-01),
  285. BOOST_MATH_BIG_CONSTANT(T, 64, 4.98677850501789875615574058e-02),
  286. BOOST_MATH_BIG_CONSTANT(T, 64, 2.80506290908675604202206833e-02),
  287. BOOST_MATH_BIG_CONSTANT(T, 64, 2.92194052159035901631494784e-02),
  288. BOOST_MATH_BIG_CONSTANT(T, 64, 4.47422430732256364094681137e-02),
  289. BOOST_MATH_BIG_CONSTANT(T, 64, 9.05971614435738691235525172e-02),
  290. BOOST_MATH_BIG_CONSTANT(T, 64, 2.29180522595459823234266708e-01),
  291. BOOST_MATH_BIG_CONSTANT(T, 64, 6.15122547776140254569073131e-01),
  292. BOOST_MATH_BIG_CONSTANT(T, 64, 7.48491812136365376477357324e+00),
  293. BOOST_MATH_BIG_CONSTANT(T, 64, -2.45569740166506688169730713e+02),
  294. BOOST_MATH_BIG_CONSTANT(T, 64, 9.66857566379480730407063170e+03),
  295. BOOST_MATH_BIG_CONSTANT(T, 64, -2.71924083955641197750323901e+05),
  296. BOOST_MATH_BIG_CONSTANT(T, 64, 5.74276685704579268845870586e+06),
  297. BOOST_MATH_BIG_CONSTANT(T, 64, -8.89753803265734681907148778e+07),
  298. BOOST_MATH_BIG_CONSTANT(T, 64, 9.82590905134996782086242180e+08),
  299. BOOST_MATH_BIG_CONSTANT(T, 64, -7.30623197145529889358596301e+09),
  300. BOOST_MATH_BIG_CONSTANT(T, 64, 3.27310000726207055200805893e+10),
  301. BOOST_MATH_BIG_CONSTANT(T, 64, -6.64365417189215599168817064e+10)
  302. };
  303. // LCOV_EXCL_STOP
  304. T ex = exp(x / 2);
  305. T result = ex * boost::math::tools::evaluate_polynomial(P, T(1 / x)) / sqrt(x);
  306. result *= ex;
  307. return result;
  308. }
  309. }
  310. template <typename T>
  311. T bessel_i0_imp(const T& x, const std::integral_constant<int, 113>&)
  312. {
  313. BOOST_MATH_STD_USING
  314. if(x < 7.75)
  315. {
  316. // Bessel I0 over[10 ^ -34, 7.75]
  317. // Max error in interpolated form : 1.274e-34
  318. // Max Error found at float128 precision = Poly : 3.096091e-34
  319. // LCOV_EXCL_START
  320. static const T P[] = {
  321. BOOST_MATH_BIG_CONSTANT(T, 113, 1.0000000000000000000000000000000001273856e+00),
  322. BOOST_MATH_BIG_CONSTANT(T, 113, 2.4999999999999999999999999999999107477496e-01),
  323. BOOST_MATH_BIG_CONSTANT(T, 113, 2.7777777777777777777777777777881795230918e-02),
  324. BOOST_MATH_BIG_CONSTANT(T, 113, 1.7361111111111111111111111106290091648808e-03),
  325. BOOST_MATH_BIG_CONSTANT(T, 113, 6.9444444444444444444444445629960334523101e-05),
  326. BOOST_MATH_BIG_CONSTANT(T, 113, 1.9290123456790123456790105563456483249753e-06),
  327. BOOST_MATH_BIG_CONSTANT(T, 113, 3.9367598891408415217940836339080514004844e-08),
  328. BOOST_MATH_BIG_CONSTANT(T, 113, 6.1511873267825648777900014857992724731476e-10),
  329. BOOST_MATH_BIG_CONSTANT(T, 113, 7.5940584281266233066162999610732449709209e-12),
  330. BOOST_MATH_BIG_CONSTANT(T, 113, 7.5940584281266232783124723601470051895304e-14),
  331. BOOST_MATH_BIG_CONSTANT(T, 113, 6.2760813455591936763439337059117957836078e-16),
  332. BOOST_MATH_BIG_CONSTANT(T, 113, 4.3583898233049738471136482147779094353096e-18),
  333. BOOST_MATH_BIG_CONSTANT(T, 113, 2.5789288895299965395422423848480340736308e-20),
  334. BOOST_MATH_BIG_CONSTANT(T, 113, 1.3157800456718804437960453545507623434606e-22),
  335. BOOST_MATH_BIG_CONSTANT(T, 113, 5.8479113149412360748032684260932041506493e-25),
  336. BOOST_MATH_BIG_CONSTANT(T, 113, 2.2843403488398038539283241944594140493394e-27),
  337. BOOST_MATH_BIG_CONSTANT(T, 113, 7.9042925594356556196790242908697582021825e-30),
  338. BOOST_MATH_BIG_CONSTANT(T, 113, 2.4395919891312152120710245152115597111101e-32),
  339. BOOST_MATH_BIG_CONSTANT(T, 113, 6.7580986145276689333214547502373003196707e-35),
  340. BOOST_MATH_BIG_CONSTANT(T, 113, 1.6886514018062348877723837017198859723889e-37),
  341. BOOST_MATH_BIG_CONSTANT(T, 113, 3.8540558465757554512570197585002702777999e-40),
  342. BOOST_MATH_BIG_CONSTANT(T, 113, 7.4684706070226893763741850944911705726436e-43),
  343. BOOST_MATH_BIG_CONSTANT(T, 113, 2.0210715309399646335858150349406935414314e-45)
  344. };
  345. // LCOV_EXCL_STOP
  346. T a = x * x / 4;
  347. return a * boost::math::tools::evaluate_polynomial(P, a) + 1;
  348. }
  349. else if(x < 15)
  350. {
  351. // Bessel I0 over[7.75, 15]
  352. // Max error in interpolated form : 7.534e-35
  353. // Max Error found at float128 precision = Poly : 6.123912e-34
  354. // LCOV_EXCL_START
  355. static const T P[] = {
  356. BOOST_MATH_BIG_CONSTANT(T, 113, 9.9999999999999999992388573069504617493518e-01),
  357. BOOST_MATH_BIG_CONSTANT(T, 113, 2.5000000000000000007304739268173096975340e-01),
  358. BOOST_MATH_BIG_CONSTANT(T, 113, 2.7777777777777777744261405400543564492074e-02),
  359. BOOST_MATH_BIG_CONSTANT(T, 113, 1.7361111111111111209006987259719750726867e-03),
  360. BOOST_MATH_BIG_CONSTANT(T, 113, 6.9444444444444442399703186871329381908321e-05),
  361. BOOST_MATH_BIG_CONSTANT(T, 113, 1.9290123456790126709286741580242189785431e-06),
  362. BOOST_MATH_BIG_CONSTANT(T, 113, 3.9367598891408374246503061422528266924389e-08),
  363. BOOST_MATH_BIG_CONSTANT(T, 113, 6.1511873267826068395343047827801353170966e-10),
  364. BOOST_MATH_BIG_CONSTANT(T, 113, 7.5940584281262673459688011737168286944521e-12),
  365. BOOST_MATH_BIG_CONSTANT(T, 113, 7.5940584281291583769928563167645746144508e-14),
  366. BOOST_MATH_BIG_CONSTANT(T, 113, 6.2760813455438840231126529638737436950274e-16),
  367. BOOST_MATH_BIG_CONSTANT(T, 113, 4.3583898233839583885132809584770578894948e-18),
  368. BOOST_MATH_BIG_CONSTANT(T, 113, 2.5789288891798658971960571838369339742994e-20),
  369. BOOST_MATH_BIG_CONSTANT(T, 113, 1.3157800470129311623308216856009970266088e-22),
  370. BOOST_MATH_BIG_CONSTANT(T, 113, 5.8479112701534604520063520412207286692581e-25),
  371. BOOST_MATH_BIG_CONSTANT(T, 113, 2.2843404822552330714586265081801727491890e-27),
  372. BOOST_MATH_BIG_CONSTANT(T, 113, 7.9042888166225242675881424439818162458179e-30),
  373. BOOST_MATH_BIG_CONSTANT(T, 113, 2.4396027771820721384198604723320045236973e-32),
  374. BOOST_MATH_BIG_CONSTANT(T, 113, 6.7577659910606076328136207973456511895030e-35),
  375. BOOST_MATH_BIG_CONSTANT(T, 113, 1.6896548123724136624716224328803899914646e-37),
  376. BOOST_MATH_BIG_CONSTANT(T, 113, 3.8285850162160539150210466453921758781984e-40),
  377. BOOST_MATH_BIG_CONSTANT(T, 113, 7.9419071894227736216423562425429524883562e-43),
  378. BOOST_MATH_BIG_CONSTANT(T, 113, 1.4720374049498608905571855665134539425038e-45),
  379. BOOST_MATH_BIG_CONSTANT(T, 113, 2.7763533278527958112907118930154738930378e-48),
  380. BOOST_MATH_BIG_CONSTANT(T, 113, 3.1213839473168678646697528580511702663617e-51),
  381. BOOST_MATH_BIG_CONSTANT(T, 113, 1.0648035313124146852372607519737686740964e-53),
  382. -BOOST_MATH_BIG_CONSTANT(T, 113, 5.1255595184052024349371058585102280860878e-57),
  383. BOOST_MATH_BIG_CONSTANT(T, 113, 3.4652470895944157957727948355523715335882e-59)
  384. };
  385. // LCOV_EXCL_STOP
  386. T a = x * x / 4;
  387. return a * boost::math::tools::evaluate_polynomial(P, a) + 1;
  388. }
  389. else if(x < 30)
  390. {
  391. // Max error in interpolated form : 1.808e-34
  392. // Max Error found at float128 precision = Poly : 2.399403e-34
  393. // LCOV_EXCL_START
  394. static const T P[] = {
  395. BOOST_MATH_BIG_CONSTANT(T, 113, 3.9894228040870793650581242239624530714032e-01),
  396. BOOST_MATH_BIG_CONSTANT(T, 113, 4.9867780576714783790784348982178607842250e-02),
  397. BOOST_MATH_BIG_CONSTANT(T, 113, 2.8051948347934462928487999569249907599510e-02),
  398. BOOST_MATH_BIG_CONSTANT(T, 113, 2.8971143420388958551176254291160976367263e-02),
  399. BOOST_MATH_BIG_CONSTANT(T, 113, 7.8197359701715582763961322341827341098897e-02),
  400. BOOST_MATH_BIG_CONSTANT(T, 113, -3.3430484862908317377522273217643346601271e+00),
  401. BOOST_MATH_BIG_CONSTANT(T, 113, 2.7884507603213662610604413960838990199224e+02),
  402. BOOST_MATH_BIG_CONSTANT(T, 113, -1.8304926482356755790062999202373909300514e+04),
  403. BOOST_MATH_BIG_CONSTANT(T, 113, 9.8867173178574875515293357145875120137676e+05),
  404. BOOST_MATH_BIG_CONSTANT(T, 113, -4.4261178812193528551544261731796888257644e+07),
  405. BOOST_MATH_BIG_CONSTANT(T, 113, 1.6453010340778116475788083817762403540097e+09),
  406. BOOST_MATH_BIG_CONSTANT(T, 113, -5.0432401330113978669454035365747869477960e+10),
  407. BOOST_MATH_BIG_CONSTANT(T, 113, 1.2462165331309799059332310595587606836357e+12),
  408. BOOST_MATH_BIG_CONSTANT(T, 113, -2.3299800389951335932792950236410844978273e+13),
  409. BOOST_MATH_BIG_CONSTANT(T, 113, 2.5748218240248714177527965706790413406639e+14),
  410. BOOST_MATH_BIG_CONSTANT(T, 113, 1.8330014378766930869945511450377736037385e+15),
  411. BOOST_MATH_BIG_CONSTANT(T, 113, -1.8494610073827453236940544799030787866218e+17),
  412. BOOST_MATH_BIG_CONSTANT(T, 113, 5.7244661371420647691301043350229977856476e+18),
  413. BOOST_MATH_BIG_CONSTANT(T, 113, -1.2386378807889388140099109087465781254321e+20),
  414. BOOST_MATH_BIG_CONSTANT(T, 113, 2.1104000573102013529518477353943384110982e+21),
  415. BOOST_MATH_BIG_CONSTANT(T, 113, -2.9426541092239879262282594572224300191016e+22),
  416. BOOST_MATH_BIG_CONSTANT(T, 113, 3.4061439136301913488512592402635688101020e+23),
  417. BOOST_MATH_BIG_CONSTANT(T, 113, -3.2836554760521986358980180942859101564671e+24),
  418. BOOST_MATH_BIG_CONSTANT(T, 113, 2.6270285589905206294944214795661236766988e+25),
  419. BOOST_MATH_BIG_CONSTANT(T, 113, -1.7278631455211972017740134341610659484259e+26),
  420. BOOST_MATH_BIG_CONSTANT(T, 113, 9.1971734473772196124736986948034978906801e+26),
  421. BOOST_MATH_BIG_CONSTANT(T, 113, -3.8669270707172568763908838463689093500098e+27),
  422. BOOST_MATH_BIG_CONSTANT(T, 113, 1.2368879358870281916900125550129211146626e+28),
  423. BOOST_MATH_BIG_CONSTANT(T, 113, -2.8296235063297831758204519071113999839858e+28),
  424. BOOST_MATH_BIG_CONSTANT(T, 113, 4.1253861666023020670144616019148954773662e+28),
  425. BOOST_MATH_BIG_CONSTANT(T, 113, -2.8809536950051955163648980306847791014734e+28)
  426. };
  427. // LCOV_EXCL_STOP
  428. return exp(x) * boost::math::tools::evaluate_polynomial(P, T(1 / x)) / sqrt(x);
  429. }
  430. else if(x < 100)
  431. {
  432. // Bessel I0 over[30, 100]
  433. // Max error in interpolated form : 1.487e-34
  434. // Max Error found at float128 precision = Poly : 1.929924e-34
  435. // LCOV_EXCL_START
  436. static const T P[] = {
  437. BOOST_MATH_BIG_CONSTANT(T, 113, 3.9894228040143267793996798658172135362278e-01),
  438. BOOST_MATH_BIG_CONSTANT(T, 113, 4.9867785050179084714910130342157246539820e-02),
  439. BOOST_MATH_BIG_CONSTANT(T, 113, 2.8050629090725751585266360464766768437048e-02),
  440. BOOST_MATH_BIG_CONSTANT(T, 113, 2.9219405302833158254515212437025679637597e-02),
  441. BOOST_MATH_BIG_CONSTANT(T, 113, 4.4742214371598631578107310396249912330627e-02),
  442. BOOST_MATH_BIG_CONSTANT(T, 113, 9.0602983776478659136184969363625092585520e-02),
  443. BOOST_MATH_BIG_CONSTANT(T, 113, 2.2839507231977478205885469900971893734770e-01),
  444. BOOST_MATH_BIG_CONSTANT(T, 113, 6.8925739165733823730525449511456529001868e-01),
  445. BOOST_MATH_BIG_CONSTANT(T, 113, 2.4238082222874015159424842335385854632223e+00),
  446. BOOST_MATH_BIG_CONSTANT(T, 113, 9.6759648427182491050716309699208988458050e+00),
  447. BOOST_MATH_BIG_CONSTANT(T, 113, 4.7292246491169360014875196108746167872215e+01),
  448. BOOST_MATH_BIG_CONSTANT(T, 113, 3.1001411442786230340015781205680362993575e+01),
  449. BOOST_MATH_BIG_CONSTANT(T, 113, 9.8277628835804873490331739499978938078848e+03),
  450. BOOST_MATH_BIG_CONSTANT(T, 113, -3.1208326312801432038715638596517882759639e+05),
  451. BOOST_MATH_BIG_CONSTANT(T, 113, 9.4813611580683862051838126076298945680803e+06),
  452. BOOST_MATH_BIG_CONSTANT(T, 113, -2.1278197693321821164135890132925119054391e+08),
  453. BOOST_MATH_BIG_CONSTANT(T, 113, 3.3190303792682886967459489059860595063574e+09),
  454. BOOST_MATH_BIG_CONSTANT(T, 113, -2.1580767338646580750893606158043485767644e+10),
  455. BOOST_MATH_BIG_CONSTANT(T, 113, -5.0256008808415702780816006134784995506549e+11),
  456. BOOST_MATH_BIG_CONSTANT(T, 113, 1.9044186472918017896554580836514681614475e+13),
  457. BOOST_MATH_BIG_CONSTANT(T, 113, -3.2521078890073151875661384381880225635135e+14),
  458. BOOST_MATH_BIG_CONSTANT(T, 113, 3.3620352486836976842181057590770636605454e+15),
  459. BOOST_MATH_BIG_CONSTANT(T, 113, -2.0375525734060401555856465179734887312420e+16),
  460. BOOST_MATH_BIG_CONSTANT(T, 113, 5.6392664899881014534361728644608549445131e+16)
  461. };
  462. // LCOV_EXCL_STOP
  463. return exp(x) * boost::math::tools::evaluate_polynomial(P, T(1 / x)) / sqrt(x);
  464. }
  465. else
  466. {
  467. // Bessel I0 over[100, INF]
  468. // Max error in interpolated form : 5.459e-35
  469. // Max Error found at float128 precision = Poly : 1.472240e-34
  470. // LCOV_EXCL_START
  471. static const T P[] = {
  472. BOOST_MATH_BIG_CONSTANT(T, 113, 3.9894228040143267793994605993438166526772e-01),
  473. BOOST_MATH_BIG_CONSTANT(T, 113, 4.9867785050179084742493257495245185241487e-02),
  474. BOOST_MATH_BIG_CONSTANT(T, 113, 2.8050629090725735167652437695397756897920e-02),
  475. BOOST_MATH_BIG_CONSTANT(T, 113, 2.9219405302839307466358297347675795965363e-02),
  476. BOOST_MATH_BIG_CONSTANT(T, 113, 4.4742214369972689474366968442268908028204e-02),
  477. BOOST_MATH_BIG_CONSTANT(T, 113, 9.0602984099194778006610058410222616383078e-02),
  478. BOOST_MATH_BIG_CONSTANT(T, 113, 2.2839502241666629677015839125593079416327e-01),
  479. BOOST_MATH_BIG_CONSTANT(T, 113, 6.8926354981801627920292655818232972385750e-01),
  480. BOOST_MATH_BIG_CONSTANT(T, 113, 2.4231921590621824187100989532173995000655e+00),
  481. BOOST_MATH_BIG_CONSTANT(T, 113, 9.7264260959693775207585700654645245723497e+00),
  482. BOOST_MATH_BIG_CONSTANT(T, 113, 4.3890136225398811195878046856373030127018e+01),
  483. BOOST_MATH_BIG_CONSTANT(T, 113, 2.1999720924619285464910452647408431234369e+02),
  484. BOOST_MATH_BIG_CONSTANT(T, 113, 1.2076909538525038580501368530598517194748e+03),
  485. BOOST_MATH_BIG_CONSTANT(T, 113, 7.5684635141332367730007149159063086133399e+03),
  486. BOOST_MATH_BIG_CONSTANT(T, 113, 3.5178192543258299267923025833141286569141e+04),
  487. BOOST_MATH_BIG_CONSTANT(T, 113, 6.2966297919851965784482163987240461837728e+05)
  488. };
  489. // LCOV_EXCL_STOP
  490. T ex = exp(x / 2);
  491. T result = ex * boost::math::tools::evaluate_polynomial(P, T(1 / x)) / sqrt(x);
  492. result *= ex;
  493. return result;
  494. }
  495. }
  496. template <typename T>
  497. T bessel_i0_imp(const T& x, const std::integral_constant<int, 0>&)
  498. {
  499. if(boost::math::tools::digits<T>() <= 24)
  500. return bessel_i0_imp(x, std::integral_constant<int, 24>());
  501. else if(boost::math::tools::digits<T>() <= 53)
  502. return bessel_i0_imp(x, std::integral_constant<int, 53>());
  503. else if(boost::math::tools::digits<T>() <= 64)
  504. return bessel_i0_imp(x, std::integral_constant<int, 64>());
  505. else if(boost::math::tools::digits<T>() <= 113)
  506. return bessel_i0_imp(x, std::integral_constant<int, 113>());
  507. BOOST_MATH_ASSERT(0);
  508. return 0;
  509. }
  510. template <typename T>
  511. inline T bessel_i0(const T& x)
  512. {
  513. typedef std::integral_constant<int,
  514. ((std::numeric_limits<T>::digits == 0) || (std::numeric_limits<T>::radix != 2)) ?
  515. 0 :
  516. std::numeric_limits<T>::digits <= 24 ?
  517. 24 :
  518. std::numeric_limits<T>::digits <= 53 ?
  519. 53 :
  520. std::numeric_limits<T>::digits <= 64 ?
  521. 64 :
  522. std::numeric_limits<T>::digits <= 113 ?
  523. 113 : -1
  524. > tag_type;
  525. return bessel_i0_imp(x, tag_type());
  526. }
  527. }}} // namespaces
  528. #endif // BOOST_MATH_BESSEL_I0_HPP