123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200 |
- /*
- * Copyright Nick Thompson, 2024
- * Use, modification and distribution are subject to the
- * Boost Software License, Version 1.0. (See accompanying file
- * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- */
- #ifndef BOOST_MATH_OPTIMIZATION_DETAIL_COMMON_HPP
- #define BOOST_MATH_OPTIMIZATION_DETAIL_COMMON_HPP
- #include <algorithm> // for std::sort
- #include <cmath>
- #include <limits>
- #include <sstream>
- #include <stdexcept>
- #include <random>
- #include <type_traits> // for std::false_type
- namespace boost::math::optimization::detail {
- template <typename T, typename = void> struct has_resize : std::false_type {};
- template <typename T>
- struct has_resize<T, std::void_t<decltype(std::declval<T>().resize(size_t{}))>> : std::true_type {};
- template <typename T> constexpr bool has_resize_v = has_resize<T>::value;
- template <typename ArgumentContainer>
- void validate_bounds(ArgumentContainer const &lower_bounds, ArgumentContainer const &upper_bounds) {
- using std::isfinite;
- std::ostringstream oss;
- if (lower_bounds.size() == 0) {
- oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
- oss << ": The dimension of the problem cannot be zero.";
- throw std::domain_error(oss.str());
- }
- if (upper_bounds.size() != lower_bounds.size()) {
- oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
- oss << ": There must be the same number of lower bounds as upper bounds, but given ";
- oss << upper_bounds.size() << " upper bounds, and " << lower_bounds.size() << " lower bounds.";
- throw std::domain_error(oss.str());
- }
- for (size_t i = 0; i < lower_bounds.size(); ++i) {
- auto lb = lower_bounds[i];
- auto ub = upper_bounds[i];
- if (lb > ub) {
- oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
- oss << ": The upper bound must be greater than or equal to the lower bound, but the upper bound is " << ub
- << " and the lower is " << lb << ".";
- throw std::domain_error(oss.str());
- }
- if (!isfinite(lb)) {
- oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
- oss << ": The lower bound must be finite, but got " << lb << ".";
- oss << " For infinite bounds, emulate with std::numeric_limits<Real>::lower() or use a standard infinite->finite "
- "transform.";
- throw std::domain_error(oss.str());
- }
- if (!isfinite(ub)) {
- oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
- oss << ": The upper bound must be finite, but got " << ub << ".";
- oss << " For infinite bounds, emulate with std::numeric_limits<Real>::max() or use a standard infinite->finite "
- "transform.";
- throw std::domain_error(oss.str());
- }
- }
- }
- template <typename ArgumentContainer, class URBG>
- std::vector<ArgumentContainer> random_initial_population(ArgumentContainer const &lower_bounds,
- ArgumentContainer const &upper_bounds,
- size_t initial_population_size, URBG &&gen) {
- using Real = typename ArgumentContainer::value_type;
- using DimensionlessReal = decltype(Real()/Real());
- constexpr bool has_resize = detail::has_resize_v<ArgumentContainer>;
- std::vector<ArgumentContainer> population(initial_population_size);
- auto const dimension = lower_bounds.size();
- for (size_t i = 0; i < population.size(); ++i) {
- if constexpr (has_resize) {
- population[i].resize(dimension);
- } else {
- // Argument type must be known at compile-time; like std::array:
- if (population[i].size() != dimension) {
- std::ostringstream oss;
- oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
- oss << ": For containers which do not have resize, the default size must be the same as the dimension, ";
- oss << "but the default container size is " << population[i].size() << " and the dimension of the problem is "
- << dimension << ".";
- oss << " The function argument container type is " << typeid(ArgumentContainer).name() << ".\n";
- throw std::runtime_error(oss.str());
- }
- }
- }
- // Why don't we provide an option to initialize with (say) a Gaussian distribution?
- // > If the optimum's location is fairly well known,
- // > a Gaussian distribution may prove somewhat faster, although it
- // > may also increase the probability that the population will converge prematurely.
- // > In general, uniform distributions are preferred, since they best reflect
- // > the lack of knowledge about the optimum's location.
- // - Differential Evolution: A Practical Approach to Global Optimization
- // That said, scipy uses Latin Hypercube sampling and says self-avoiding sequences are preferable.
- // So this is something that could be investigated and potentially improved.
- using std::uniform_real_distribution;
- uniform_real_distribution<DimensionlessReal> dis(DimensionlessReal(0), DimensionlessReal(1));
- for (size_t i = 0; i < population.size(); ++i) {
- for (size_t j = 0; j < dimension; ++j) {
- auto const &lb = lower_bounds[j];
- auto const &ub = upper_bounds[j];
- population[i][j] = lb + dis(gen) * (ub - lb);
- }
- }
- return population;
- }
- template <typename ArgumentContainer>
- void validate_initial_guess(ArgumentContainer const &initial_guess, ArgumentContainer const &lower_bounds,
- ArgumentContainer const &upper_bounds) {
- using std::isfinite;
- std::ostringstream oss;
- auto const dimension = lower_bounds.size();
- if (initial_guess.size() != dimension) {
- oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
- oss << ": The initial guess must have the same dimensions as the problem,";
- oss << ", but the problem size is " << dimension << " and the initial guess has " << initial_guess.size()
- << " elements.";
- throw std::domain_error(oss.str());
- }
- for (size_t i = 0; i < dimension; ++i) {
- auto lb = lower_bounds[i];
- auto ub = upper_bounds[i];
- if (!isfinite(initial_guess[i])) {
- oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
- oss << ": At index " << i << ", the initial guess is " << initial_guess[i]
- << ", make sure all elements of the initial guess are finite.";
- throw std::domain_error(oss.str());
- }
- if (initial_guess[i] < lb || initial_guess[i] > ub) {
- oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
- oss << ": At index " << i << " the initial guess " << initial_guess[i] << " is not in the bounds [" << lb << ", "
- << ub << "].";
- throw std::domain_error(oss.str());
- }
- }
- }
- // Return indices corresponding to the minimum function values.
- template <typename Real> std::vector<size_t> best_indices(std::vector<Real> const &function_values) {
- using std::isnan;
- const size_t n = function_values.size();
- std::vector<size_t> indices(n);
- for (size_t i = 0; i < n; ++i) {
- indices[i] = i;
- }
- std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
- if (isnan(function_values[a])) {
- return false;
- }
- if (isnan(function_values[b])) {
- return true;
- }
- return function_values[a] < function_values[b];
- });
- return indices;
- }
- template<typename RandomAccessContainer>
- auto weighted_lehmer_mean(RandomAccessContainer const & values, RandomAccessContainer const & weights) {
- using std::isfinite;
- if (values.size() != weights.size()) {
- std::ostringstream oss;
- oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
- oss << ": There must be the same number of weights as values, but got " << values.size() << " values and " << weights.size() << " weights.";
- throw std::logic_error(oss.str());
- }
- if (values.size() == 0) {
- std::ostringstream oss;
- oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
- oss << ": There must at least one value provided.";
- throw std::logic_error(oss.str());
- }
- using Real = typename RandomAccessContainer::value_type;
- Real numerator = 0;
- Real denominator = 0;
- for (size_t i = 0; i < values.size(); ++i) {
- if (weights[i] < 0 || !isfinite(weights[i])) {
- std::ostringstream oss;
- oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
- oss << ": All weights must be positive and finite, but got received weight " << weights[i] << " at index " << i << " of " << weights.size() << ".";
- throw std::domain_error(oss.str());
- }
- Real tmp = weights[i]*values[i];
- numerator += tmp*values[i];
- denominator += tmp;
- }
- return numerator/denominator;
- }
- } // namespace boost::math::optimization::detail
- #endif
|