123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572 |
- // Copyright John Maddock 2007.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_DISTRIBUTIONS_DETAIL_INV_DISCRETE_QUANTILE
- #define BOOST_MATH_DISTRIBUTIONS_DETAIL_INV_DISCRETE_QUANTILE
- #include <algorithm>
- namespace boost{ namespace math{ namespace detail{
- //
- // Functor for root finding algorithm:
- //
- template <class Dist>
- struct distribution_quantile_finder
- {
- typedef typename Dist::value_type value_type;
- typedef typename Dist::policy_type policy_type;
- distribution_quantile_finder(const Dist d, value_type p, bool c)
- : dist(d), target(p), comp(c) {}
- value_type operator()(value_type const& x)
- {
- return comp ? value_type(target - cdf(complement(dist, x))) : value_type(cdf(dist, x) - target);
- }
- private:
- Dist dist;
- value_type target;
- bool comp;
- };
- //
- // The purpose of adjust_bounds, is to toggle the last bit of the
- // range so that both ends round to the same integer, if possible.
- // If they do both round the same then we terminate the search
- // for the root *very* quickly when finding an integer result.
- // At the point that this function is called we know that "a" is
- // below the root and "b" above it, so this change can not result
- // in the root no longer being bracketed.
- //
- template <class Real, class Tol>
- void adjust_bounds(Real& /* a */, Real& /* b */, Tol const& /* tol */){}
- template <class Real>
- void adjust_bounds(Real& /* a */, Real& b, tools::equal_floor const& /* tol */)
- {
- BOOST_MATH_STD_USING
- b -= tools::epsilon<Real>() * b;
- }
- template <class Real>
- void adjust_bounds(Real& a, Real& /* b */, tools::equal_ceil const& /* tol */)
- {
- BOOST_MATH_STD_USING
- a += tools::epsilon<Real>() * a;
- }
- template <class Real>
- void adjust_bounds(Real& a, Real& b, tools::equal_nearest_integer const& /* tol */)
- {
- BOOST_MATH_STD_USING
- a += tools::epsilon<Real>() * a;
- b -= tools::epsilon<Real>() * b;
- }
- //
- // This is where all the work is done:
- //
- template <class Dist, class Tolerance>
- typename Dist::value_type
- do_inverse_discrete_quantile(
- const Dist& dist,
- const typename Dist::value_type& p,
- bool comp,
- typename Dist::value_type guess,
- const typename Dist::value_type& multiplier,
- typename Dist::value_type adder,
- const Tolerance& tol,
- std::uintmax_t& max_iter)
- {
- typedef typename Dist::value_type value_type;
- typedef typename Dist::policy_type policy_type;
- static const char* function = "boost::math::do_inverse_discrete_quantile<%1%>";
- BOOST_MATH_STD_USING
- distribution_quantile_finder<Dist> f(dist, p, comp);
- //
- // Max bounds of the distribution:
- //
- value_type min_bound, max_bound;
- boost::math::tie(min_bound, max_bound) = support(dist);
- if(guess > max_bound)
- guess = max_bound;
- if(guess < min_bound)
- guess = min_bound;
- value_type fa = f(guess);
- std::uintmax_t count = max_iter - 1;
- value_type fb(fa), a(guess), b =0; // Compiler warning C4701: potentially uninitialized local variable 'b' used
- if(fa == 0)
- return guess;
- //
- // For small expected results, just use a linear search:
- //
- if(guess < 10)
- {
- b = a;
- while((a < 10) && (fa * fb >= 0))
- {
- if(fb <= 0)
- {
- a = b;
- b = a + 1;
- if(b > max_bound)
- b = max_bound;
- fb = f(b);
- --count;
- if(fb == 0)
- return b;
- if(a == b)
- return b; // can't go any higher!
- }
- else
- {
- b = a;
- a = (std::max)(value_type(b - 1), value_type(0));
- if(a < min_bound)
- a = min_bound;
- fa = f(a);
- --count;
- if(fa == 0)
- return a;
- if(a == b)
- return a; // We can't go any lower than this!
- }
- }
- }
- //
- // Try and bracket using a couple of additions first,
- // we're assuming that "guess" is likely to be accurate
- // to the nearest int or so:
- //
- else if((adder != 0) && (a + adder != a))
- {
- //
- // If we're looking for a large result, then bump "adder" up
- // by a bit to increase our chances of bracketing the root:
- //
- //adder = (std::max)(adder, 0.001f * guess);
- if(fa < 0)
- {
- b = a + adder;
- if(b > max_bound)
- b = max_bound;
- }
- else
- {
- b = (std::max)(value_type(a - adder), value_type(0));
- if(b < min_bound)
- b = min_bound;
- }
- fb = f(b);
- --count;
- if(fb == 0)
- return b;
- if(count && (fa * fb >= 0))
- {
- //
- // We didn't bracket the root, try
- // once more:
- //
- a = b;
- fa = fb;
- if(fa < 0)
- {
- b = a + adder;
- if(b > max_bound)
- b = max_bound;
- }
- else
- {
- b = (std::max)(value_type(a - adder), value_type(0));
- if(b < min_bound)
- b = min_bound;
- }
- fb = f(b);
- --count;
- }
- if(a > b)
- {
- using std::swap;
- swap(a, b);
- swap(fa, fb);
- }
- }
- //
- // If the root hasn't been bracketed yet, try again
- // using the multiplier this time:
- //
- if((boost::math::sign)(fb) == (boost::math::sign)(fa))
- {
- if(fa < 0)
- {
- //
- // Zero is to the right of x2, so walk upwards
- // until we find it:
- //
- while(((boost::math::sign)(fb) == (boost::math::sign)(fa)) && (a != b))
- {
- if(count == 0)
- return policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, policy_type()); // LCOV_EXCL_LINE
- a = b;
- fa = fb;
- b *= multiplier;
- if(b > max_bound)
- b = max_bound;
- fb = f(b);
- --count;
- BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
- }
- }
- else
- {
- //
- // Zero is to the left of a, so walk downwards
- // until we find it:
- //
- while(((boost::math::sign)(fb) == (boost::math::sign)(fa)) && (a != b))
- {
- if(fabs(a) < tools::min_value<value_type>())
- {
- // Escape route just in case the answer is zero!
- max_iter -= count;
- max_iter += 1;
- return 0;
- }
- if(count == 0)
- return policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", a, policy_type()); // LCOV_EXCL_LINE
- b = a;
- fb = fa;
- a /= multiplier;
- if(a < min_bound)
- a = min_bound;
- fa = f(a);
- --count;
- BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
- }
- }
- }
- max_iter -= count;
- if(fa == 0)
- return a;
- if(fb == 0)
- return b;
- if(a == b)
- return b; // Ran out of bounds trying to bracket - there is no answer!
- //
- // Adjust bounds so that if we're looking for an integer
- // result, then both ends round the same way:
- //
- adjust_bounds(a, b, tol);
- //
- // We don't want zero or denorm lower bounds:
- //
- if(a < tools::min_value<value_type>())
- a = tools::min_value<value_type>();
- //
- // Go ahead and find the root:
- //
- std::pair<value_type, value_type> r = toms748_solve(f, a, b, fa, fb, tol, count, policy_type());
- max_iter += count;
- if (max_iter >= policies::get_max_root_iterations<policy_type>())
- {
- return policies::raise_evaluation_error<value_type>(function, "Unable to locate solution in a reasonable time:" // LCOV_EXCL_LINE
- " either there is no answer to quantile or the answer is infinite. Current best guess is %1%", r.first, policy_type()); // LCOV_EXCL_LINE
- }
- BOOST_MATH_INSTRUMENT_CODE("max_iter = " << max_iter << " count = " << count);
- return (r.first + r.second) / 2;
- }
- //
- // Some special routine for rounding up and down:
- // We want to check and see if we are very close to an integer, and if so test to see if
- // that integer is an exact root of the cdf. We do this because our root finder only
- // guarantees to find *a root*, and there can sometimes be many consecutive floating
- // point values which are all roots. This is especially true if the target probability
- // is very close 1.
- //
- template <class Dist>
- inline typename Dist::value_type round_to_floor(const Dist& d, typename Dist::value_type result, typename Dist::value_type p, bool c)
- {
- BOOST_MATH_STD_USING
- typename Dist::value_type cc = ceil(result);
- typename Dist::value_type pp = cc <= support(d).second ? c ? cdf(complement(d, cc)) : cdf(d, cc) : 1;
- if(pp == p)
- result = cc;
- else
- result = floor(result);
- //
- // Now find the smallest integer <= result for which we get an exact root:
- //
- while(result != 0)
- {
- cc = floor(float_prior(result));
- if(cc < support(d).first)
- break;
- pp = c ? cdf(complement(d, cc)) : cdf(d, cc);
- if(c ? pp > p : pp < p)
- break;
- result = cc;
- }
- return result;
- }
- #ifdef _MSC_VER
- #pragma warning(push)
- #pragma warning(disable:4127)
- #endif
- template <class Dist>
- inline typename Dist::value_type round_to_ceil(const Dist& d, typename Dist::value_type result, typename Dist::value_type p, bool c)
- {
- BOOST_MATH_STD_USING
- typename Dist::value_type cc = floor(result);
- typename Dist::value_type pp = cc >= support(d).first ? c ? cdf(complement(d, cc)) : cdf(d, cc) : 0;
- if(pp == p)
- result = cc;
- else
- result = ceil(result);
- //
- // Now find the largest integer >= result for which we get an exact root:
- //
- while(true)
- {
- cc = ceil(float_next(result));
- if(cc > support(d).second)
- break;
- pp = c ? cdf(complement(d, cc)) : cdf(d, cc);
- if(c ? pp < p : pp > p)
- break;
- result = cc;
- }
- return result;
- }
- #ifdef _MSC_VER
- #pragma warning(pop)
- #endif
- //
- // Now finally are the public API functions.
- // There is one overload for each policy,
- // each one is responsible for selecting the correct
- // termination condition, and rounding the result
- // to an int where required.
- //
- template <class Dist>
- inline typename Dist::value_type
- inverse_discrete_quantile(
- const Dist& dist,
- typename Dist::value_type p,
- bool c,
- const typename Dist::value_type& guess,
- const typename Dist::value_type& multiplier,
- const typename Dist::value_type& adder,
- const policies::discrete_quantile<policies::real>&,
- std::uintmax_t& max_iter)
- {
- if(p > 0.5)
- {
- p = 1 - p;
- c = !c;
- }
- typename Dist::value_type pp = c ? 1 - p : p;
- if(pp <= pdf(dist, 0))
- return 0;
- return do_inverse_discrete_quantile(
- dist,
- p,
- c,
- guess,
- multiplier,
- adder,
- tools::eps_tolerance<typename Dist::value_type>(policies::digits<typename Dist::value_type, typename Dist::policy_type>()),
- max_iter);
- }
- template <class Dist>
- inline typename Dist::value_type
- inverse_discrete_quantile(
- const Dist& dist,
- const typename Dist::value_type& p,
- bool c,
- const typename Dist::value_type& guess,
- const typename Dist::value_type& multiplier,
- const typename Dist::value_type& adder,
- const policies::discrete_quantile<policies::integer_round_outwards>&,
- std::uintmax_t& max_iter)
- {
- typedef typename Dist::value_type value_type;
- BOOST_MATH_STD_USING
- typename Dist::value_type pp = c ? 1 - p : p;
- if(pp <= pdf(dist, 0))
- return 0;
- //
- // What happens next depends on whether we're looking for an
- // upper or lower quantile:
- //
- if(pp < 0.5f)
- return round_to_floor(dist, do_inverse_discrete_quantile(
- dist,
- p,
- c,
- (guess < 1 ? value_type(1) : (value_type)floor(guess)),
- multiplier,
- adder,
- tools::equal_floor(),
- max_iter), p, c);
- // else:
- return round_to_ceil(dist, do_inverse_discrete_quantile(
- dist,
- p,
- c,
- (value_type)ceil(guess),
- multiplier,
- adder,
- tools::equal_ceil(),
- max_iter), p, c);
- }
- template <class Dist>
- inline typename Dist::value_type
- inverse_discrete_quantile(
- const Dist& dist,
- const typename Dist::value_type& p,
- bool c,
- const typename Dist::value_type& guess,
- const typename Dist::value_type& multiplier,
- const typename Dist::value_type& adder,
- const policies::discrete_quantile<policies::integer_round_inwards>&,
- std::uintmax_t& max_iter)
- {
- typedef typename Dist::value_type value_type;
- BOOST_MATH_STD_USING
- typename Dist::value_type pp = c ? 1 - p : p;
- if(pp <= pdf(dist, 0))
- return 0;
- //
- // What happens next depends on whether we're looking for an
- // upper or lower quantile:
- //
- if(pp < 0.5f)
- return round_to_ceil(dist, do_inverse_discrete_quantile(
- dist,
- p,
- c,
- ceil(guess),
- multiplier,
- adder,
- tools::equal_ceil(),
- max_iter), p, c);
- // else:
- return round_to_floor(dist, do_inverse_discrete_quantile(
- dist,
- p,
- c,
- (guess < 1 ? value_type(1) : floor(guess)),
- multiplier,
- adder,
- tools::equal_floor(),
- max_iter), p, c);
- }
- template <class Dist>
- inline typename Dist::value_type
- inverse_discrete_quantile(
- const Dist& dist,
- const typename Dist::value_type& p,
- bool c,
- const typename Dist::value_type& guess,
- const typename Dist::value_type& multiplier,
- const typename Dist::value_type& adder,
- const policies::discrete_quantile<policies::integer_round_down>&,
- std::uintmax_t& max_iter)
- {
- typedef typename Dist::value_type value_type;
- BOOST_MATH_STD_USING
- typename Dist::value_type pp = c ? 1 - p : p;
- if(pp <= pdf(dist, 0))
- return 0;
- return round_to_floor(dist, do_inverse_discrete_quantile(
- dist,
- p,
- c,
- (guess < 1 ? value_type(1) : floor(guess)),
- multiplier,
- adder,
- tools::equal_floor(),
- max_iter), p, c);
- }
- template <class Dist>
- inline typename Dist::value_type
- inverse_discrete_quantile(
- const Dist& dist,
- const typename Dist::value_type& p,
- bool c,
- const typename Dist::value_type& guess,
- const typename Dist::value_type& multiplier,
- const typename Dist::value_type& adder,
- const policies::discrete_quantile<policies::integer_round_up>&,
- std::uintmax_t& max_iter)
- {
- BOOST_MATH_STD_USING
- typename Dist::value_type pp = c ? 1 - p : p;
- if(pp <= pdf(dist, 0))
- return 0;
- return round_to_ceil(dist, do_inverse_discrete_quantile(
- dist,
- p,
- c,
- ceil(guess),
- multiplier,
- adder,
- tools::equal_ceil(),
- max_iter), p, c);
- }
- template <class Dist>
- inline typename Dist::value_type
- inverse_discrete_quantile(
- const Dist& dist,
- const typename Dist::value_type& p,
- bool c,
- const typename Dist::value_type& guess,
- const typename Dist::value_type& multiplier,
- const typename Dist::value_type& adder,
- const policies::discrete_quantile<policies::integer_round_nearest>&,
- std::uintmax_t& max_iter)
- {
- typedef typename Dist::value_type value_type;
- BOOST_MATH_STD_USING
- typename Dist::value_type pp = c ? 1 - p : p;
- if(pp <= pdf(dist, 0))
- return 0;
- //
- // Note that we adjust the guess to the nearest half-integer:
- // this increase the chances that we will bracket the root
- // with two results that both round to the same integer quickly.
- //
- return round_to_floor(dist, do_inverse_discrete_quantile(
- dist,
- p,
- c,
- (guess < 0.5f ? value_type(1.5f) : floor(guess + 0.5f) + 0.5f),
- multiplier,
- adder,
- tools::equal_nearest_integer(),
- max_iter) + 0.5f, p, c);
- }
- }}} // namespaces
- #endif // BOOST_MATH_DISTRIBUTIONS_DETAIL_INV_DISCRETE_QUANTILE
|