123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623 |
- // Boost.Geometry
- // Copyright (c) 2023-2024 Adam Wulkiewicz, Lodz, Poland.
- // Copyright (c) 2015-2022 Oracle and/or its affiliates.
- // Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle
- // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
- // Use, modification and distribution is subject to the Boost Software License,
- // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
- // http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_GEOMETRY_FORMULAS_AREA_FORMULAS_HPP
- #define BOOST_GEOMETRY_FORMULAS_AREA_FORMULAS_HPP
- #include <boost/geometry/core/radian_access.hpp>
- #include <boost/geometry/formulas/flattening.hpp>
- #include <boost/geometry/formulas/mean_radius.hpp>
- #include <boost/geometry/formulas/karney_inverse.hpp>
- #include <boost/geometry/util/constexpr.hpp>
- #include <boost/geometry/util/math.hpp>
- #include <boost/math/special_functions/hypot.hpp>
- namespace boost { namespace geometry { namespace formula
- {
- /*!
- \brief Formulas for computing spherical and ellipsoidal polygon area.
- The current class computes the area of the trapezoid defined by a segment
- the two meridians passing by the endpoints and the equator.
- \author See
- - Danielsen JS, The area under the geodesic. Surv Rev 30(232):
- 61–66, 1989
- - Charles F.F Karney, Algorithms for geodesics, 2011
- https://arxiv.org/pdf/1109.4448.pdf
- */
- template
- <
- typename CT,
- std::size_t SeriesOrder = 2,
- bool ExpandEpsN = true
- >
- class area_formulas
- {
- public:
- //TODO: move the following to a more general space to be used by other
- // classes as well
- /*
- Evaluate the polynomial in x using Horner's method.
- */
- template <typename NT, typename IteratorType>
- static inline NT horner_evaluate(NT const& x,
- IteratorType begin,
- IteratorType end)
- {
- NT result(0);
- IteratorType it = end;
- do
- {
- result = result * x + *--it;
- }
- while (it != begin);
- return result;
- }
- /*
- Clenshaw algorithm for summing trigonometric series
- https://en.wikipedia.org/wiki/Clenshaw_algorithm
- */
- template <typename NT, typename IteratorType>
- static inline NT clenshaw_sum(NT const& cosx,
- IteratorType begin,
- IteratorType end)
- {
- IteratorType it = end;
- bool odd = true;
- CT b_k, b_k1(0), b_k2(0);
- do
- {
- CT c_k = odd ? *--it : NT(0);
- b_k = c_k + NT(2) * cosx * b_k1 - b_k2;
- b_k2 = b_k1;
- b_k1 = b_k;
- odd = !odd;
- }
- while (it != begin);
- return *begin + b_k1 * cosx - b_k2;
- }
- template<typename T>
- static inline void normalize(T& x, T& y)
- {
- T h = boost::math::hypot(x, y);
- x /= h;
- y /= h;
- }
- /*
- Generate and evaluate the series expansion of the following integral
- I4 = -integrate( (t(ep2) - t(k2*sin(sigma1)^2)) / (ep2 - k2*sin(sigma1)^2)
- * sin(sigma1)/2, sigma1, pi/2, sigma )
- where
- t(x) = sqrt(1+1/x)*asinh(sqrt(x)) + x
- valid for ep2 and k2 small. We substitute k2 = 4 * eps / (1 - eps)^2
- and ep2 = 4 * n / (1 - n)^2 and expand in eps and n.
- The resulting sum of the series is of the form
- sum(C4[l] * cos((2*l+1)*sigma), l, 0, maxpow-1) )
- The above expansion is performed in Computer Algebra System Maxima.
- The C++ code (that yields the function evaluate_coeffs_n below) is generated
- by the following Maxima script and is based on script:
- http://geographiclib.sourceforge.net/html/geod.mac
- // Maxima script begin
- taylordepth:5$
- ataylor(expr,var,ord):=expand(ratdisrep(taylor(expr,var,0,ord)))$
- jtaylor(expr,var1,var2,ord):=block([zz],expand(subst([zz=1],
- ratdisrep(taylor(subst([var1=zz*var1,var2=zz*var2],expr),zz,0,ord)))))$
- compute(maxpow):=block([int,t,intexp,area, x,ep2,k2],
- maxpow:maxpow-1,
- t : sqrt(1+1/x) * asinh(sqrt(x)) + x,
- int:-(tf(ep2) - tf(k2*sin(sigma)^2)) / (ep2 - k2*sin(sigma)^2)
- * sin(sigma)/2,
- int:subst([tf(ep2)=subst([x=ep2],t),
- tf(k2*sin(sigma)^2)=subst([x=k2*sin(sigma)^2],t)],
- int),
- int:subst([abs(sin(sigma))=sin(sigma)],int),
- int:subst([k2=4*eps/(1-eps)^2,ep2=4*n/(1-n)^2],int),
- intexp:jtaylor(int,n,eps,maxpow),
- area:trigreduce(integrate(intexp,sigma)),
- area:expand(area-subst(sigma=%pi/2,area)),
- for i:0 thru maxpow do C4[i]:coeff(area,cos((2*i+1)*sigma)),
- if expand(area-sum(C4[i]*cos((2*i+1)*sigma),i,0,maxpow)) # 0
- then error("left over terms in I4"),
- 'done)$
- printcode(maxpow):=
- block([tab2:" ",tab3:" "],
- print(" switch (SeriesOrder) {"),
- for nn:1 thru maxpow do block([c],
- print(concat(tab2,"case ",string(nn-1),":")),
- c:0,
- for m:0 thru nn-1 do block(
- [q:jtaylor(subst([n=n],C4[m]),n,eps,nn-1),
- linel:1200],
- for j:m thru nn-1 do (
- print(concat(tab3,"coeffs_n[",c,"] = ",
- string(horner(coeff(q,eps,j))),";")),
- c:c+1)
- ),
- print(concat(tab3,"break;"))),
- print(" }"),
- 'done)$
- maxpow:6$
- compute(maxpow)$
- printcode(maxpow)$
- // Maxima script end
- In the resulting code we should replace each number x by CT(x)
- e.g. using the following scirpt:
- sed -e 's/[0-9]\+/CT(&)/g; s/\[CT(/\[/g; s/)\]/\]/g;
- s/case\sCT(/case /g; s/):/:/g'
- */
- static inline void evaluate_coeffs_n(CT const& n, CT coeffs_n[])
- {
- switch (SeriesOrder) {
- case 0:
- coeffs_n[0] = CT(2)/CT(3);
- break;
- case 1:
- coeffs_n[0] = (CT(10)-CT(4)*n)/CT(15);
- coeffs_n[1] = -CT(1)/CT(5);
- coeffs_n[2] = CT(1)/CT(45);
- break;
- case 2:
- coeffs_n[0] = (n*(CT(8)*n-CT(28))+CT(70))/CT(105);
- coeffs_n[1] = (CT(16)*n-CT(7))/CT(35);
- coeffs_n[2] = -CT(2)/CT(105);
- coeffs_n[3] = (CT(7)-CT(16)*n)/CT(315);
- coeffs_n[4] = -CT(2)/CT(105);
- coeffs_n[5] = CT(4)/CT(525);
- break;
- case 3:
- coeffs_n[0] = (n*(n*(CT(4)*n+CT(24))-CT(84))+CT(210))/CT(315);
- coeffs_n[1] = ((CT(48)-CT(32)*n)*n-CT(21))/CT(105);
- coeffs_n[2] = (-CT(32)*n-CT(6))/CT(315);
- coeffs_n[3] = CT(11)/CT(315);
- coeffs_n[4] = (n*(CT(32)*n-CT(48))+CT(21))/CT(945);
- coeffs_n[5] = (CT(64)*n-CT(18))/CT(945);
- coeffs_n[6] = -CT(1)/CT(105);
- coeffs_n[7] = (CT(12)-CT(32)*n)/CT(1575);
- coeffs_n[8] = -CT(8)/CT(1575);
- coeffs_n[9] = CT(8)/CT(2205);
- break;
- case 4:
- coeffs_n[0] = (n*(n*(n*(CT(16)*n+CT(44))+CT(264))-CT(924))+CT(2310))/CT(3465);
- coeffs_n[1] = (n*(n*(CT(48)*n-CT(352))+CT(528))-CT(231))/CT(1155);
- coeffs_n[2] = (n*(CT(1088)*n-CT(352))-CT(66))/CT(3465);
- coeffs_n[3] = (CT(121)-CT(368)*n)/CT(3465);
- coeffs_n[4] = CT(4)/CT(1155);
- coeffs_n[5] = (n*((CT(352)-CT(48)*n)*n-CT(528))+CT(231))/CT(10395);
- coeffs_n[6] = ((CT(704)-CT(896)*n)*n-CT(198))/CT(10395);
- coeffs_n[7] = (CT(80)*n-CT(99))/CT(10395);
- coeffs_n[8] = CT(4)/CT(1155);
- coeffs_n[9] = (n*(CT(320)*n-CT(352))+CT(132))/CT(17325);
- coeffs_n[10] = (CT(384)*n-CT(88))/CT(17325);
- coeffs_n[11] = -CT(8)/CT(1925);
- coeffs_n[12] = (CT(88)-CT(256)*n)/CT(24255);
- coeffs_n[13] = -CT(16)/CT(8085);
- coeffs_n[14] = CT(64)/CT(31185);
- break;
- case 5:
- coeffs_n[0] = (n*(n*(n*(n*(CT(100)*n+CT(208))+CT(572))+CT(3432))-CT(12012))+CT(30030))
- /CT(45045);
- coeffs_n[1] = (n*(n*(n*(CT(64)*n+CT(624))-CT(4576))+CT(6864))-CT(3003))/CT(15015);
- coeffs_n[2] = (n*((CT(14144)-CT(10656)*n)*n-CT(4576))-CT(858))/CT(45045);
- coeffs_n[3] = ((-CT(224)*n-CT(4784))*n+CT(1573))/CT(45045);
- coeffs_n[4] = (CT(1088)*n+CT(156))/CT(45045);
- coeffs_n[5] = CT(97)/CT(15015);
- coeffs_n[6] = (n*(n*((-CT(64)*n-CT(624))*n+CT(4576))-CT(6864))+CT(3003))/CT(135135);
- coeffs_n[7] = (n*(n*(CT(5952)*n-CT(11648))+CT(9152))-CT(2574))/CT(135135);
- coeffs_n[8] = (n*(CT(5792)*n+CT(1040))-CT(1287))/CT(135135);
- coeffs_n[9] = (CT(468)-CT(2944)*n)/CT(135135);
- coeffs_n[10] = CT(1)/CT(9009);
- coeffs_n[11] = (n*((CT(4160)-CT(1440)*n)*n-CT(4576))+CT(1716))/CT(225225);
- coeffs_n[12] = ((CT(4992)-CT(8448)*n)*n-CT(1144))/CT(225225);
- coeffs_n[13] = (CT(1856)*n-CT(936))/CT(225225);
- coeffs_n[14] = CT(8)/CT(10725);
- coeffs_n[15] = (n*(CT(3584)*n-CT(3328))+CT(1144))/CT(315315);
- coeffs_n[16] = (CT(1024)*n-CT(208))/CT(105105);
- coeffs_n[17] = -CT(136)/CT(63063);
- coeffs_n[18] = (CT(832)-CT(2560)*n)/CT(405405);
- coeffs_n[19] = -CT(128)/CT(135135);
- coeffs_n[20] = CT(128)/CT(99099);
- break;
- }
- }
- /*
- Expand in k2 and ep2.
- */
- static inline void evaluate_coeffs_ep(CT const& ep, CT coeffs_n[])
- {
- switch (SeriesOrder) {
- case 0:
- coeffs_n[0] = CT(2)/CT(3);
- break;
- case 1:
- coeffs_n[0] = (CT(10)-ep)/CT(15);
- coeffs_n[1] = -CT(1)/CT(20);
- coeffs_n[2] = CT(1)/CT(180);
- break;
- case 2:
- coeffs_n[0] = (ep*(CT(4)*ep-CT(7))+CT(70))/CT(105);
- coeffs_n[1] = (CT(4)*ep-CT(7))/CT(140);
- coeffs_n[2] = CT(1)/CT(42);
- coeffs_n[3] = (CT(7)-CT(4)*ep)/CT(1260);
- coeffs_n[4] = -CT(1)/CT(252);
- coeffs_n[5] = CT(1)/CT(2100);
- break;
- case 3:
- coeffs_n[0] = (ep*((CT(12)-CT(8)*ep)*ep-CT(21))+CT(210))/CT(315);
- coeffs_n[1] = ((CT(12)-CT(8)*ep)*ep-CT(21))/CT(420);
- coeffs_n[2] = (CT(3)-CT(2)*ep)/CT(126);
- coeffs_n[3] = -CT(1)/CT(72);
- coeffs_n[4] = (ep*(CT(8)*ep-CT(12))+CT(21))/CT(3780);
- coeffs_n[5] = (CT(2)*ep-CT(3))/CT(756);
- coeffs_n[6] = CT(1)/CT(360);
- coeffs_n[7] = (CT(3)-CT(2)*ep)/CT(6300);
- coeffs_n[8] = -CT(1)/CT(1800);
- coeffs_n[9] = CT(1)/CT(17640);
- break;
- case 4:
- coeffs_n[0] = (ep*(ep*(ep*(CT(64)*ep-CT(88))+CT(132))-CT(231))+CT(2310))/CT(3465);
- coeffs_n[1] = (ep*(ep*(CT(64)*ep-CT(88))+CT(132))-CT(231))/CT(4620);
- coeffs_n[2] = (ep*(CT(16)*ep-CT(22))+CT(33))/CT(1386);
- coeffs_n[3] = (CT(8)*ep-CT(11))/CT(792);
- coeffs_n[4] = CT(1)/CT(110);
- coeffs_n[5] = (ep*((CT(88)-CT(64)*ep)*ep-CT(132))+CT(231))/CT(41580);
- coeffs_n[6] = ((CT(22)-CT(16)*ep)*ep-CT(33))/CT(8316);
- coeffs_n[7] = (CT(11)-CT(8)*ep)/CT(3960);
- coeffs_n[8] = -CT(1)/CT(495);
- coeffs_n[9] = (ep*(CT(16)*ep-CT(22))+CT(33))/CT(69300);
- coeffs_n[10] = (CT(8)*ep-CT(11))/CT(19800);
- coeffs_n[11] = CT(1)/CT(1925);
- coeffs_n[12] = (CT(11)-CT(8)*ep)/CT(194040);
- coeffs_n[13] = -CT(1)/CT(10780);
- coeffs_n[14] = CT(1)/CT(124740);
- break;
- case 5:
- coeffs_n[0] = (ep*(ep*(ep*((CT(832)-CT(640)*ep)*ep-CT(1144))+CT(1716))-CT(3003))+CT(30030))/CT(45045);
- coeffs_n[1] = (ep*(ep*((CT(832)-CT(640)*ep)*ep-CT(1144))+CT(1716))-CT(3003))/CT(60060);
- coeffs_n[2] = (ep*((CT(208)-CT(160)*ep)*ep-CT(286))+CT(429))/CT(18018);
- coeffs_n[3] = ((CT(104)-CT(80)*ep)*ep-CT(143))/CT(10296);
- coeffs_n[4] = (CT(13)-CT(10)*ep)/CT(1430);
- coeffs_n[5] = -CT(1)/CT(156);
- coeffs_n[6] = (ep*(ep*(ep*(CT(640)*ep-CT(832))+CT(1144))-CT(1716))+CT(3003))/CT(540540);
- coeffs_n[7] = (ep*(ep*(CT(160)*ep-CT(208))+CT(286))-CT(429))/CT(108108);
- coeffs_n[8] = (ep*(CT(80)*ep-CT(104))+CT(143))/CT(51480);
- coeffs_n[9] = (CT(10)*ep-CT(13))/CT(6435);
- coeffs_n[10] = CT(5)/CT(3276);
- coeffs_n[11] = (ep*((CT(208)-CT(160)*ep)*ep-CT(286))+CT(429))/CT(900900);
- coeffs_n[12] = ((CT(104)-CT(80)*ep)*ep-CT(143))/CT(257400);
- coeffs_n[13] = (CT(13)-CT(10)*ep)/CT(25025);
- coeffs_n[14] = -CT(1)/CT(2184);
- coeffs_n[15] = (ep*(CT(80)*ep-CT(104))+CT(143))/CT(2522520);
- coeffs_n[16] = (CT(10)*ep-CT(13))/CT(140140);
- coeffs_n[17] = CT(5)/CT(45864);
- coeffs_n[18] = (CT(13)-CT(10)*ep)/CT(1621620);
- coeffs_n[19] = -CT(1)/CT(58968);
- coeffs_n[20] = CT(1)/CT(792792);
- break;
- }
- }
- /*
- Given the set of coefficients coeffs1[] evaluate on var2 and return
- the set of coefficients coeffs2[]
- */
- template <typename CoeffsType>
- static inline void evaluate_coeffs_var2(CT const& var2,
- CoeffsType const coeffs1[],
- CT coeffs2[])
- {
- std::size_t begin(0), end(0);
- for(std::size_t i = 0; i <= SeriesOrder; i++)
- {
- end = begin + SeriesOrder + 1 - i;
- coeffs2[i] = ((i==0) ? CT(1) : math::pow(var2, int(i)))
- * horner_evaluate(var2, coeffs1 + begin, coeffs1 + end);
- begin = end;
- }
- }
- static inline CT trapezoidal_formula(CT lat1r, CT lat2r, CT lon21r)
- {
- CT const c1 = CT(1);
- CT const c2 = CT(2);
- CT const tan_lat1 = tan(lat1r / c2);
- CT const tan_lat2 = tan(lat2r / c2);
- return c2 * atan(((tan_lat1 + tan_lat2) / (c1 + tan_lat1 * tan_lat2))* tan(lon21r / c2));
- }
- /*
- Compute the spherical excess of a geodesic (or shperical) segment
- */
- template
- <
- bool LongSegment,
- typename PointOfSegment
- >
- static inline CT spherical(PointOfSegment const& p1,
- PointOfSegment const& p2)
- {
- CT const pi = math::pi<CT>();
- CT excess;
- CT const lon1r = get_as_radian<0>(p1);
- CT const lat1r = get_as_radian<1>(p1);
- CT const lon2r = get_as_radian<0>(p2);
- CT const lat2r = get_as_radian<1>(p2);
- CT lon12r = lon2r - lon1r;
- math::normalize_longitude<radian, CT>(lon12r);
- if (lon12r == pi || lon12r == -pi)
- {
- return pi;
- }
- if BOOST_GEOMETRY_CONSTEXPR (LongSegment)
- {
- if (lat1r != lat2r) // not for segments parallel to equator
- {
- CT const cbet1 = cos(lat1r);
- CT const sbet1 = sin(lat1r);
- CT const cbet2 = cos(lat2r);
- CT const sbet2 = sin(lat2r);
- CT const omg12 = lon2r - lon1r;
- CT const comg12 = cos(omg12);
- CT const somg12 = sin(omg12);
- CT const cbet1_sbet2 = cbet1 * sbet2;
- CT const sbet1_cbet2 = sbet1 * cbet2;
- CT const alp1 = atan2(cbet1_sbet2 - sbet1_cbet2 * comg12, cbet2 * somg12);
- CT const alp2 = atan2(cbet1_sbet2 * comg12 - sbet1_cbet2, cbet1 * somg12);
- excess = alp2 - alp1;
- }
- else
- {
- excess = trapezoidal_formula(lat1r, lat2r, lon12r);
- }
- }
- else
- {
- excess = trapezoidal_formula(lat1r, lat2r, lon12r);
- }
- return excess;
- }
- struct return_type_ellipsoidal
- {
- return_type_ellipsoidal()
- : spherical_term(0),
- ellipsoidal_term(0)
- {}
- CT spherical_term;
- CT ellipsoidal_term;
- };
- /*
- Compute the ellipsoidal correction of a geodesic (or shperical) segment
- */
- template
- <
- template <typename, bool, bool, bool, bool, bool> class Inverse,
- typename PointOfSegment,
- typename SpheroidConst
- >
- static inline auto ellipsoidal(PointOfSegment const& p1,
- PointOfSegment const& p2,
- SpheroidConst const& spheroid_const)
- {
- return_type_ellipsoidal result;
- CT const lon1r = get_as_radian<0>(p1);
- CT const lat1r = get_as_radian<1>(p1);
- CT const lon2r = get_as_radian<0>(p2);
- CT const lat2r = get_as_radian<1>(p2);
- // Azimuth Approximation
- using inverse_type = Inverse<CT, true, true, true, false, false>;
- auto i_res = inverse_type::apply(lon1r, lat1r, lon2r, lat2r, spheroid_const.m_spheroid);
- CT const alp1 = i_res.azimuth;
- CT const alp2 = i_res.reverse_azimuth;
- // Constants
- CT const c0 = CT(0);
- CT const c1 = CT(1);
- CT const c2 = CT(2);
- CT const pi = math::pi<CT>();
- CT const half_pi = pi / c2;
- CT const ep = spheroid_const.m_ep;
- CT const one_minus_f = c1 - spheroid_const.m_f;
- // Basic trigonometric computations
- // the compiler could optimize here using sincos function
- // TODO: optimization: those quantities are already computed in inverse formula
- // at least in some inverse formulas, so do not compute them again here
- /*
- CT sin_bet1 = sin(lat1r);
- CT cos_bet1 = cos(lat1r);
- CT sin_bet2 = sin(lat2r);
- CT cos_bet2 = cos(lat2r);
- sin_bet1 *= one_minus_f;
- sin_bet2 *= one_minus_f;
- normalize(sin_bet1, cos_bet1);
- normalize(sin_bet2, cos_bet2);
- */
- CT const tan_bet1 = tan(lat1r) * one_minus_f;
- CT const tan_bet2 = tan(lat2r) * one_minus_f;
- CT const cos_bet1 = cos(atan(tan_bet1));
- CT const cos_bet2 = cos(atan(tan_bet2));
- CT const sin_bet1 = tan_bet1 * cos_bet1;
- CT const sin_bet2 = tan_bet2 * cos_bet2;
- CT const sin_alp1 = sin(alp1);
- CT const cos_alp1 = cos(alp1);
- CT const cos_alp2 = cos(alp2);
- CT const sin_alp0 = sin_alp1 * cos_bet1;
- // Spherical term computation
- CT excess;
- CT lon12r = lon2r - lon1r;
- math::normalize_longitude<radian, CT>(lon12r);
- // Comparing with "==" works with all test cases here, but could potential create numerical issues
- if (lon12r == pi || lon12r == -pi)
- {
- result.spherical_term = pi;
- }
- else
- {
- bool const meridian = lon12r == c0
- || lat1r == half_pi || lat1r == -half_pi
- || lat2r == half_pi || lat2r == -half_pi;
- if (!meridian && (i_res.distance)
- < mean_radius<CT>(spheroid_const.m_spheroid) / CT(638)) // short segment
- {
- excess = trapezoidal_formula(lat1r, lat2r, lon12r);
- }
- else
- {
- /* in some cases this formula gives more accurate results
- CT sin_omg12 = cos_omg1 * sin_omg2 - sin_omg1 * cos_omg2;
- normalize(sin_omg12, cos_omg12);
- CT cos_omg12p1 = CT(1) + cos_omg12;
- CT cos_bet1p1 = CT(1) + cos_bet1;
- CT cos_bet2p1 = CT(1) + cos_bet2;
- excess = CT(2) * atan2(sin_omg12 * (sin_bet1 * cos_bet2p1 + sin_bet2 * cos_bet1p1),
- cos_omg12p1 * (sin_bet1 * sin_bet2 + cos_bet1p1 * cos_bet2p1));
- */
- excess = alp2 - alp1;
- }
- result.spherical_term = excess;
- }
- // Ellipsoidal term computation (uses integral approximation)
- CT const cos_alp0 = math::sqrt(c1 - math::sqr(sin_alp0));
- //CT const cos_alp0 = hypot(cos_alp1, sin_alp1 * sin_bet1);
- CT cos_sig1 = cos_alp1 * cos_bet1;
- CT cos_sig2 = cos_alp2 * cos_bet2;
- CT sin_sig1 = sin_bet1;
- CT sin_sig2 = sin_bet2;
- normalize(sin_sig1, cos_sig1);
- normalize(sin_sig2, cos_sig2);
- CT coeffs[SeriesOrder + 1];
- if (ExpandEpsN) // expand by eps and n
- {
- CT const k2 = math::sqr(ep * cos_alp0);
- CT const sqrt_k2_plus_one = math::sqrt(c1 + k2);
- CT const eps = (sqrt_k2_plus_one - c1) / (sqrt_k2_plus_one + c1);
- // Generate and evaluate the polynomials on eps (i.e. var2 = eps)
- // to get the final series coefficients
- evaluate_coeffs_var2(eps, spheroid_const.m_coeffs_var, coeffs);
- }
- else
- { // expand by k2 and ep
- CT const k2 = math::sqr(ep * cos_alp0);
- CT const ep2 = math::sqr(ep);
- CT coeffs_var[((SeriesOrder+2)*(SeriesOrder+1))/2];
- // Generate and evaluate the polynomials on ep2
- evaluate_coeffs_ep(ep2, coeffs_var);
- // Generate and evaluate the polynomials on k2 (i.e. var2 = k2)
- evaluate_coeffs_var2(k2, coeffs_var, coeffs);
- }
- // Evaluate the trigonometric sum
- constexpr auto series_order_plus_one = SeriesOrder + 1;
- CT const I12 = clenshaw_sum(cos_sig2, coeffs, coeffs + series_order_plus_one)
- - clenshaw_sum(cos_sig1, coeffs, coeffs + series_order_plus_one);
- // The part of the ellipsodal correction that depends on
- // point coordinates
- result.ellipsoidal_term = cos_alp0 * sin_alp0 * I12;
- return result;
- }
- // Check whenever a segment crosses the prime meridian
- // First normalize to [0,360)
- template <typename PointOfSegment>
- static inline bool crosses_prime_meridian(PointOfSegment const& p1,
- PointOfSegment const& p2)
- {
- CT const pi = geometry::math::pi<CT>();
- CT const two_pi = geometry::math::two_pi<CT>();
- CT const lon1r = get_as_radian<0>(p1);
- CT const lon2r = get_as_radian<0>(p2);
- CT lon12 = lon2r - lon1r;
- math::normalize_longitude<radian, CT>(lon12);
- // Comparing with "==" works with all test cases here, but could potential create numerical issues
- if (lon12 == pi || lon12 == -pi)
- {
- return true;
- }
- CT const p1_lon = lon1r - ( std::floor( lon1r / two_pi ) * two_pi );
- CT const p2_lon = lon2r - ( std::floor( lon2r / two_pi ) * two_pi );
- CT const max_lon = (std::max)(p1_lon, p2_lon);
- CT const min_lon = (std::min)(p1_lon, p2_lon);
- return max_lon > pi && min_lon < pi && max_lon - min_lon > pi;
- }
- };
- }}} // namespace boost::geometry::formula
- #endif // BOOST_GEOMETRY_FORMULAS_AREA_FORMULAS_HPP
|