12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058 |
- // Copyright Christopher Kormanyos 2002 - 2011.
- // Copyright 2011 John Maddock.
- // Distributed under the Boost Software License, Version 1.0.
- // (See accompanying file LICENSE_1_0.txt or copy at
- // http://www.boost.org/LICENSE_1_0.txt)
- // This work is based on an earlier work:
- // "Algorithm 910: A Portable C++ Multiple-Precision System for Special-Function Calculations",
- // in ACM TOMS, {VOL 37, ISSUE 4, (February 2011)} (C) ACM, 2011. http://doi.acm.org/10.1145/1916461.1916469
- //
- // This file has no include guards or namespaces - it's expanded inline inside default_ops.hpp
- //
- #include <boost/multiprecision/detail/standalone_config.hpp>
- #include <boost/multiprecision/detail/no_exceptions_support.hpp>
- #include <boost/multiprecision/detail/assert.hpp>
- #ifdef BOOST_MSVC
- #pragma warning(push)
- #pragma warning(disable : 6326) // comparison of two constants
- #pragma warning(disable : 4127) // conditional expression is constant
- #endif
- template <class T>
- void hyp0F1(T& result, const T& b, const T& x)
- {
- using si_type = typename boost::multiprecision::detail::canonical<std::int32_t, T>::type ;
- using ui_type = typename boost::multiprecision::detail::canonical<std::uint32_t, T>::type;
- // Compute the series representation of Hypergeometric0F1 taken from
- // http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric0F1/06/01/01/
- // There are no checks on input range or parameter boundaries.
- T x_pow_n_div_n_fact(x);
- T pochham_b(b);
- T bp(b);
- eval_divide(result, x_pow_n_div_n_fact, pochham_b);
- eval_add(result, ui_type(1));
- si_type n;
- T tol;
- tol = ui_type(1);
- eval_ldexp(tol, tol, 1 - boost::multiprecision::detail::digits2<number<T, et_on> >::value());
- eval_multiply(tol, result);
- if (eval_get_sign(tol) < 0)
- tol.negate();
- T term;
- const int series_limit =
- boost::multiprecision::detail::digits2<number<T, et_on> >::value() < 100
- ? 100
- : boost::multiprecision::detail::digits2<number<T, et_on> >::value();
- // Series expansion of hyperg_0f1(; b; x).
- for (n = 2; n < series_limit; ++n)
- {
- eval_multiply(x_pow_n_div_n_fact, x);
- eval_divide(x_pow_n_div_n_fact, n);
- eval_increment(bp);
- eval_multiply(pochham_b, bp);
- eval_divide(term, x_pow_n_div_n_fact, pochham_b);
- eval_add(result, term);
- bool neg_term = eval_get_sign(term) < 0;
- if (neg_term)
- term.negate();
- if (term.compare(tol) <= 0)
- break;
- }
- if (n >= series_limit)
- BOOST_MP_THROW_EXCEPTION(std::runtime_error("H0F1 Failed to Converge"));
- }
- template <class T, unsigned N, bool b = boost::multiprecision::detail::is_variable_precision<boost::multiprecision::number<T> >::value>
- struct scoped_N_precision
- {
- template <class U>
- scoped_N_precision(U const&) {}
- template <class U>
- void reduce(U&) {}
- };
- template <class T, unsigned N>
- struct scoped_N_precision<T, N, true>
- {
- unsigned old_precision, old_arg_precision;
- scoped_N_precision(T& arg)
- {
- old_precision = T::thread_default_precision();
- old_arg_precision = arg.precision();
- T::thread_default_precision(old_arg_precision * N);
- arg.precision(old_arg_precision * N);
- }
- ~scoped_N_precision()
- {
- T::thread_default_precision(old_precision);
- }
- void reduce(T& arg)
- {
- arg.precision(old_arg_precision);
- }
- };
- template <class T>
- void reduce_n_half_pi(T& arg, const T& n, bool go_down)
- {
- //
- // We need to perform argument reduction at 3 times the precision of arg
- // in order to ensure a correct result up to arg = 1/epsilon. Beyond that
- // the value of n will have been incorrectly calculated anyway since it will
- // have a value greater than 1/epsilon and no longer be an exact integer value.
- //
- // More information in ARGUMENT REDUCTION FOR HUGE ARGUMENTS. K C Ng.
- //
- // There are two mutually exclusive ways to achieve this, both of which are
- // supported here:
- // 1) To define a fixed precision type with 3 times the precision for the calculation.
- // 2) To dynamically increase the precision of the variables.
- //
- using reduction_type = typename boost::multiprecision::detail::transcendental_reduction_type<T>::type;
- //
- // Make a copy of the arg at higher precision:
- //
- reduction_type big_arg(arg);
- //
- // Dynamically increase precision when supported, this increases the default
- // and ups the precision of big_arg to match:
- //
- scoped_N_precision<T, 3> scoped_precision(big_arg);
- //
- // High precision PI:
- //
- reduction_type reduction = get_constant_pi<reduction_type>();
- eval_ldexp(reduction, reduction, -1); // divide by 2
- eval_multiply(reduction, n);
- BOOST_MATH_INSTRUMENT_CODE(big_arg.str(10, std::ios_base::scientific));
- BOOST_MATH_INSTRUMENT_CODE(reduction.str(10, std::ios_base::scientific));
- if (go_down)
- eval_subtract(big_arg, reduction, big_arg);
- else
- eval_subtract(big_arg, reduction);
- arg = T(big_arg);
- //
- // If arg is a variable precision type, then we have just copied the
- // precision of big_arg s well it's value. Reduce the precision now:
- //
- scoped_precision.reduce(arg);
- BOOST_MATH_INSTRUMENT_CODE(big_arg.str(10, std::ios_base::scientific));
- BOOST_MATH_INSTRUMENT_CODE(arg.str(10, std::ios_base::scientific));
- }
- template <class T>
- void eval_sin(T& result, const T& x)
- {
- static_assert(number_category<T>::value == number_kind_floating_point, "The sin function is only valid for floating point types.");
- BOOST_MATH_INSTRUMENT_CODE(x.str(0, std::ios_base::scientific));
- if (&result == &x)
- {
- T temp;
- eval_sin(temp, x);
- result = temp;
- return;
- }
- using si_type = typename boost::multiprecision::detail::canonical<std::int32_t, T>::type ;
- using ui_type = typename boost::multiprecision::detail::canonical<std::uint32_t, T>::type;
- using fp_type = typename std::tuple_element<0, typename T::float_types>::type ;
- switch (eval_fpclassify(x))
- {
- case FP_INFINITE:
- case FP_NAN:
- BOOST_IF_CONSTEXPR(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
- {
- result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
- errno = EDOM;
- }
- else
- BOOST_MP_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
- return;
- case FP_ZERO:
- result = x;
- return;
- default:;
- }
- // Local copy of the argument
- T xx = x;
- // Analyze and prepare the phase of the argument.
- // Make a local, positive copy of the argument, xx.
- // The argument xx will be reduced to 0 <= xx <= pi/2.
- bool b_negate_sin = false;
- if (eval_get_sign(x) < 0)
- {
- xx.negate();
- b_negate_sin = !b_negate_sin;
- }
- T n_pi, t;
- T half_pi = get_constant_pi<T>();
- eval_ldexp(half_pi, half_pi, -1); // divide by 2
- // Remove multiples of pi/2.
- if (xx.compare(half_pi) > 0)
- {
- eval_divide(n_pi, xx, half_pi);
- eval_trunc(n_pi, n_pi);
- t = ui_type(4);
- eval_fmod(t, n_pi, t);
- bool b_go_down = false;
- if (t.compare(ui_type(1)) == 0)
- {
- b_go_down = true;
- }
- else if (t.compare(ui_type(2)) == 0)
- {
- b_negate_sin = !b_negate_sin;
- }
- else if (t.compare(ui_type(3)) == 0)
- {
- b_negate_sin = !b_negate_sin;
- b_go_down = true;
- }
- if (b_go_down)
- eval_increment(n_pi);
- //
- // If n_pi is > 1/epsilon, then it is no longer an exact integer value
- // but an approximation. As a result we can no longer reliably reduce
- // xx to 0 <= xx < pi/2, nor can we tell the sign of the result as we need
- // n_pi % 4 for that, but that will always be zero in this situation.
- // We could use a higher precision type for n_pi, along with division at
- // higher precision, but that's rather expensive. So for now we do not support
- // this, and will see if anyone complains and has a legitimate use case.
- //
- if (n_pi.compare(get_constant_one_over_epsilon<T>()) > 0)
- {
- result = ui_type(0);
- return;
- }
- reduce_n_half_pi(xx, n_pi, b_go_down);
- //
- // Post reduction we may be a few ulp below zero or above pi/2
- // given that n_pi was calculated at working precision and not
- // at the higher precision used for reduction. Correct that now:
- //
- if (eval_get_sign(xx) < 0)
- {
- xx.negate();
- b_negate_sin = !b_negate_sin;
- }
- if (xx.compare(half_pi) > 0)
- {
- eval_ldexp(half_pi, half_pi, 1);
- eval_subtract(xx, half_pi, xx);
- eval_ldexp(half_pi, half_pi, -1);
- b_go_down = !b_go_down;
- }
- BOOST_MATH_INSTRUMENT_CODE(xx.str(0, std::ios_base::scientific));
- BOOST_MATH_INSTRUMENT_CODE(n_pi.str(0, std::ios_base::scientific));
- BOOST_MP_ASSERT(xx.compare(half_pi) <= 0);
- BOOST_MP_ASSERT(xx.compare(ui_type(0)) >= 0);
- }
- t = half_pi;
- eval_subtract(t, xx);
- const bool b_zero = eval_get_sign(xx) == 0;
- const bool b_pi_half = eval_get_sign(t) == 0;
- BOOST_MATH_INSTRUMENT_CODE(xx.str(0, std::ios_base::scientific));
- BOOST_MATH_INSTRUMENT_CODE(t.str(0, std::ios_base::scientific));
- // Check if the reduced argument is very close to 0 or pi/2.
- const bool b_near_zero = xx.compare(fp_type(1e-1)) < 0;
- const bool b_near_pi_half = t.compare(fp_type(1e-1)) < 0;
- if (b_zero)
- {
- result = ui_type(0);
- }
- else if (b_pi_half)
- {
- result = ui_type(1);
- }
- else if (b_near_zero)
- {
- eval_multiply(t, xx, xx);
- eval_divide(t, si_type(-4));
- T t2;
- t2 = fp_type(1.5);
- hyp0F1(result, t2, t);
- BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific));
- eval_multiply(result, xx);
- }
- else if (b_near_pi_half)
- {
- eval_multiply(t, t);
- eval_divide(t, si_type(-4));
- T t2;
- t2 = fp_type(0.5);
- hyp0F1(result, t2, t);
- BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific));
- }
- else
- {
- // Scale to a small argument for an efficient Taylor series,
- // implemented as a hypergeometric function. Use a standard
- // divide by three identity a certain number of times.
- // Here we use division by 3^9 --> (19683 = 3^9).
- constexpr si_type n_scale = 9;
- constexpr si_type n_three_pow_scale = static_cast<si_type>(19683L);
- eval_divide(xx, n_three_pow_scale);
- // Now with small arguments, we are ready for a series expansion.
- eval_multiply(t, xx, xx);
- eval_divide(t, si_type(-4));
- T t2;
- t2 = fp_type(1.5);
- hyp0F1(result, t2, t);
- BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific));
- eval_multiply(result, xx);
- // Convert back using multiple angle identity.
- for (std::int32_t k = static_cast<std::int32_t>(0); k < n_scale; k++)
- {
- // Rescale the cosine value using the multiple angle identity.
- eval_multiply(t2, result, ui_type(3));
- eval_multiply(t, result, result);
- eval_multiply(t, result);
- eval_multiply(t, ui_type(4));
- eval_subtract(result, t2, t);
- }
- }
- if (b_negate_sin)
- result.negate();
- BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific));
- }
- template <class T>
- void eval_cos(T& result, const T& x)
- {
- static_assert(number_category<T>::value == number_kind_floating_point, "The cos function is only valid for floating point types.");
- if (&result == &x)
- {
- T temp;
- eval_cos(temp, x);
- result = temp;
- return;
- }
- using si_type = typename boost::multiprecision::detail::canonical<std::int32_t, T>::type ;
- using ui_type = typename boost::multiprecision::detail::canonical<std::uint32_t, T>::type;
- switch (eval_fpclassify(x))
- {
- case FP_INFINITE:
- case FP_NAN:
- BOOST_IF_CONSTEXPR(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
- {
- result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
- errno = EDOM;
- }
- else
- BOOST_MP_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
- return;
- case FP_ZERO:
- result = ui_type(1);
- return;
- default:;
- }
- // Local copy of the argument
- T xx = x;
- // Analyze and prepare the phase of the argument.
- // Make a local, positive copy of the argument, xx.
- // The argument xx will be reduced to 0 <= xx <= pi/2.
- bool b_negate_cos = false;
- if (eval_get_sign(x) < 0)
- {
- xx.negate();
- }
- BOOST_MATH_INSTRUMENT_CODE(xx.str(0, std::ios_base::scientific));
- T n_pi, t;
- T half_pi = get_constant_pi<T>();
- eval_ldexp(half_pi, half_pi, -1); // divide by 2
- // Remove even multiples of pi.
- if (xx.compare(half_pi) > 0)
- {
- eval_divide(t, xx, half_pi);
- eval_trunc(n_pi, t);
- //
- // If n_pi is > 1/epsilon, then it is no longer an exact integer value
- // but an approximation. As a result we can no longer reliably reduce
- // xx to 0 <= xx < pi/2, nor can we tell the sign of the result as we need
- // n_pi % 4 for that, but that will always be zero in this situation.
- // We could use a higher precision type for n_pi, along with division at
- // higher precision, but that's rather expensive. So for now we do not support
- // this, and will see if anyone complains and has a legitimate use case.
- //
- if (n_pi.compare(get_constant_one_over_epsilon<T>()) > 0)
- {
- result = ui_type(1);
- return;
- }
- BOOST_MATH_INSTRUMENT_CODE(n_pi.str(0, std::ios_base::scientific));
- t = ui_type(4);
- eval_fmod(t, n_pi, t);
- bool b_go_down = false;
- if (t.compare(ui_type(0)) == 0)
- {
- b_go_down = true;
- }
- else if (t.compare(ui_type(1)) == 0)
- {
- b_negate_cos = true;
- }
- else if (t.compare(ui_type(2)) == 0)
- {
- b_go_down = true;
- b_negate_cos = true;
- }
- else
- {
- BOOST_MP_ASSERT(t.compare(ui_type(3)) == 0);
- }
- if (b_go_down)
- eval_increment(n_pi);
- reduce_n_half_pi(xx, n_pi, b_go_down);
- //
- // Post reduction we may be a few ulp below zero or above pi/2
- // given that n_pi was calculated at working precision and not
- // at the higher precision used for reduction. Correct that now:
- //
- if (eval_get_sign(xx) < 0)
- {
- xx.negate();
- b_negate_cos = !b_negate_cos;
- }
- if (xx.compare(half_pi) > 0)
- {
- eval_ldexp(half_pi, half_pi, 1);
- eval_subtract(xx, half_pi, xx);
- eval_ldexp(half_pi, half_pi, -1);
- }
- BOOST_MP_ASSERT(xx.compare(half_pi) <= 0);
- BOOST_MP_ASSERT(xx.compare(ui_type(0)) >= 0);
- }
- else
- {
- n_pi = ui_type(1);
- reduce_n_half_pi(xx, n_pi, true);
- }
- const bool b_zero = eval_get_sign(xx) == 0;
- if (b_zero)
- {
- result = si_type(0);
- }
- else
- {
- eval_sin(result, xx);
- }
- if (b_negate_cos)
- result.negate();
- BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific));
- }
- template <class T>
- void eval_tan(T& result, const T& x)
- {
- static_assert(number_category<T>::value == number_kind_floating_point, "The tan function is only valid for floating point types.");
- if (&result == &x)
- {
- T temp;
- eval_tan(temp, x);
- result = temp;
- return;
- }
- T t;
- eval_sin(result, x);
- eval_cos(t, x);
- eval_divide(result, t);
- }
- template <class T>
- void hyp2F1(T& result, const T& a, const T& b, const T& c, const T& x)
- {
- // Compute the series representation of hyperg_2f1 taken from
- // Abramowitz and Stegun 15.1.1.
- // There are no checks on input range or parameter boundaries.
- using ui_type = typename boost::multiprecision::detail::canonical<std::uint32_t, T>::type;
- T x_pow_n_div_n_fact(x);
- T pochham_a(a);
- T pochham_b(b);
- T pochham_c(c);
- T ap(a);
- T bp(b);
- T cp(c);
- eval_multiply(result, pochham_a, pochham_b);
- eval_divide(result, pochham_c);
- eval_multiply(result, x_pow_n_div_n_fact);
- eval_add(result, ui_type(1));
- T lim;
- eval_ldexp(lim, result, 1 - boost::multiprecision::detail::digits2<number<T, et_on> >::value());
- if (eval_get_sign(lim) < 0)
- lim.negate();
- ui_type n;
- T term;
- const unsigned series_limit =
- boost::multiprecision::detail::digits2<number<T, et_on> >::value() < 100
- ? 100
- : boost::multiprecision::detail::digits2<number<T, et_on> >::value();
- // Series expansion of hyperg_2f1(a, b; c; x).
- for (n = 2; n < series_limit; ++n)
- {
- eval_multiply(x_pow_n_div_n_fact, x);
- eval_divide(x_pow_n_div_n_fact, n);
- eval_increment(ap);
- eval_multiply(pochham_a, ap);
- eval_increment(bp);
- eval_multiply(pochham_b, bp);
- eval_increment(cp);
- eval_multiply(pochham_c, cp);
- eval_multiply(term, pochham_a, pochham_b);
- eval_divide(term, pochham_c);
- eval_multiply(term, x_pow_n_div_n_fact);
- eval_add(result, term);
- if (eval_get_sign(term) < 0)
- term.negate();
- if (lim.compare(term) >= 0)
- break;
- }
- if (n > series_limit)
- BOOST_MP_THROW_EXCEPTION(std::runtime_error("H2F1 failed to converge."));
- }
- template <class T>
- void eval_asin(T& result, const T& x)
- {
- static_assert(number_category<T>::value == number_kind_floating_point, "The asin function is only valid for floating point types.");
- using ui_type = typename boost::multiprecision::detail::canonical<std::uint32_t, T>::type;
- using fp_type = typename std::tuple_element<0, typename T::float_types>::type ;
- if (&result == &x)
- {
- T t(x);
- eval_asin(result, t);
- return;
- }
- switch (eval_fpclassify(x))
- {
- case FP_NAN:
- case FP_INFINITE:
- BOOST_IF_CONSTEXPR(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
- {
- result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
- errno = EDOM;
- }
- else
- BOOST_MP_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
- return;
- case FP_ZERO:
- result = x;
- return;
- default:;
- }
- const bool b_neg = eval_get_sign(x) < 0;
- T xx(x);
- if (b_neg)
- xx.negate();
- int c = xx.compare(ui_type(1));
- if (c > 0)
- {
- BOOST_IF_CONSTEXPR(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
- {
- result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
- errno = EDOM;
- }
- else
- BOOST_MP_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
- return;
- }
- else if (c == 0)
- {
- result = get_constant_pi<T>();
- eval_ldexp(result, result, -1);
- if (b_neg)
- result.negate();
- return;
- }
- if (xx.compare(fp_type(1e-3)) < 0)
- {
- // http://functions.wolfram.com/ElementaryFunctions/ArcSin/26/01/01/
- eval_multiply(xx, xx);
- T t1, t2;
- t1 = fp_type(0.5f);
- t2 = fp_type(1.5f);
- hyp2F1(result, t1, t1, t2, xx);
- eval_multiply(result, x);
- return;
- }
- else if (xx.compare(fp_type(1 - 5e-2f)) > 0)
- {
- // http://functions.wolfram.com/ElementaryFunctions/ArcSin/26/01/01/
- // This branch is simlilar in complexity to Newton iterations down to
- // the above limit. It is *much* more accurate.
- T dx1;
- T t1, t2;
- eval_subtract(dx1, ui_type(1), xx);
- t1 = fp_type(0.5f);
- t2 = fp_type(1.5f);
- eval_ldexp(dx1, dx1, -1);
- hyp2F1(result, t1, t1, t2, dx1);
- eval_ldexp(dx1, dx1, 2);
- eval_sqrt(t1, dx1);
- eval_multiply(result, t1);
- eval_ldexp(t1, get_constant_pi<T>(), -1);
- result.negate();
- eval_add(result, t1);
- if (b_neg)
- result.negate();
- return;
- }
- #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
- using guess_type = typename boost::multiprecision::detail::canonical<long double, T>::type;
- #else
- using guess_type = fp_type;
- #endif
- // Get initial estimate using standard math function asin.
- guess_type dd;
- eval_convert_to(&dd, xx);
- result = (guess_type)(std::asin(dd));
- // Newton-Raphson iteration, we should double our precision with each iteration,
- // in practice this seems to not quite work in all cases... so terminate when we
- // have at least 2/3 of the digits correct on the assumption that the correction
- // we've just added will finish the job...
- std::intmax_t current_precision = eval_ilogb(result);
- std::intmax_t target_precision = std::numeric_limits<number<T> >::is_specialized ?
- current_precision - 1 - (std::numeric_limits<number<T> >::digits * 2) / 3
- : current_precision - 1 - (boost::multiprecision::detail::digits2<number<T> >::value() * 2) / 3;
- // Newton-Raphson iteration
- while (current_precision > target_precision)
- {
- T sine, cosine;
- eval_sin(sine, result);
- eval_cos(cosine, result);
- eval_subtract(sine, xx);
- eval_divide(sine, cosine);
- eval_subtract(result, sine);
- current_precision = eval_ilogb(sine);
- if (current_precision <= (std::numeric_limits<typename T::exponent_type>::min)() + 1)
- break;
- }
- if (b_neg)
- result.negate();
- }
- template <class T>
- inline void eval_acos(T& result, const T& x)
- {
- static_assert(number_category<T>::value == number_kind_floating_point, "The acos function is only valid for floating point types.");
- using ui_type = typename boost::multiprecision::detail::canonical<std::uint32_t, T>::type;
- switch (eval_fpclassify(x))
- {
- case FP_NAN:
- case FP_INFINITE:
- BOOST_IF_CONSTEXPR(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
- {
- result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
- errno = EDOM;
- }
- else
- BOOST_MP_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
- return;
- case FP_ZERO:
- result = get_constant_pi<T>();
- eval_ldexp(result, result, -1); // divide by two.
- return;
- }
- T xx;
- eval_abs(xx, x);
- int c = xx.compare(ui_type(1));
- if (c > 0)
- {
- BOOST_IF_CONSTEXPR(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
- {
- result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
- errno = EDOM;
- }
- else
- BOOST_MP_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
- return;
- }
- else if (c == 0)
- {
- if (eval_get_sign(x) < 0)
- result = get_constant_pi<T>();
- else
- result = ui_type(0);
- return;
- }
- using fp_type = typename std::tuple_element<0, typename T::float_types>::type;
- if (xx.compare(fp_type(1e-3)) < 0)
- {
- // https://functions.wolfram.com/ElementaryFunctions/ArcCos/26/01/01/
- eval_multiply(xx, xx);
- T t1, t2;
- t1 = fp_type(0.5f);
- t2 = fp_type(1.5f);
- hyp2F1(result, t1, t1, t2, xx);
- eval_multiply(result, x);
- eval_ldexp(t1, get_constant_pi<T>(), -1);
- result.negate();
- eval_add(result, t1);
- return;
- }
- if (eval_get_sign(x) < 0)
- {
- eval_acos(result, xx);
- result.negate();
- eval_add(result, get_constant_pi<T>());
- return;
- }
- else if (xx.compare(fp_type(0.85)) > 0)
- {
- // https://functions.wolfram.com/ElementaryFunctions/ArcCos/26/01/01/
- // This branch is simlilar in complexity to Newton iterations down to
- // the above limit. It is *much* more accurate.
- T dx1;
- T t1, t2;
- eval_subtract(dx1, ui_type(1), xx);
- t1 = fp_type(0.5f);
- t2 = fp_type(1.5f);
- eval_ldexp(dx1, dx1, -1);
- hyp2F1(result, t1, t1, t2, dx1);
- eval_ldexp(dx1, dx1, 2);
- eval_sqrt(t1, dx1);
- eval_multiply(result, t1);
- return;
- }
- #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
- using guess_type = typename boost::multiprecision::detail::canonical<long double, T>::type;
- #else
- using guess_type = fp_type;
- #endif
- // Get initial estimate using standard math function asin.
- guess_type dd;
- eval_convert_to(&dd, xx);
- result = (guess_type)(std::acos(dd));
- // Newton-Raphson iteration, we should double our precision with each iteration,
- // in practice this seems to not quite work in all cases... so terminate when we
- // have at least 2/3 of the digits correct on the assumption that the correction
- // we've just added will finish the job...
- std::intmax_t current_precision = eval_ilogb(result);
- std::intmax_t target_precision = std::numeric_limits<number<T> >::is_specialized ?
- current_precision - 1 - (std::numeric_limits<number<T> >::digits * 2) / 3
- : current_precision - 1 - (boost::multiprecision::detail::digits2<number<T> >::value() * 2) / 3;
- // Newton-Raphson iteration
- while (current_precision > target_precision)
- {
- T sine, cosine;
- eval_sin(sine, result);
- eval_cos(cosine, result);
- eval_subtract(cosine, xx);
- cosine.negate();
- eval_divide(cosine, sine);
- eval_subtract(result, cosine);
- current_precision = eval_ilogb(cosine);
- if (current_precision <= (std::numeric_limits<typename T::exponent_type>::min)() + 1)
- break;
- }
- }
- template <class T>
- void eval_atan(T& result, const T& x)
- {
- static_assert(number_category<T>::value == number_kind_floating_point, "The atan function is only valid for floating point types.");
- using si_type = typename boost::multiprecision::detail::canonical<std::int32_t, T>::type ;
- using ui_type = typename boost::multiprecision::detail::canonical<std::uint32_t, T>::type;
- using fp_type = typename std::tuple_element<0, typename T::float_types>::type ;
- switch (eval_fpclassify(x))
- {
- case FP_NAN:
- result = x;
- errno = EDOM;
- return;
- case FP_ZERO:
- result = x;
- return;
- case FP_INFINITE:
- if (eval_get_sign(x) < 0)
- {
- eval_ldexp(result, get_constant_pi<T>(), -1);
- result.negate();
- }
- else
- eval_ldexp(result, get_constant_pi<T>(), -1);
- return;
- default:;
- }
- const bool b_neg = eval_get_sign(x) < 0;
- T xx(x);
- if (b_neg)
- xx.negate();
- if (xx.compare(fp_type(0.1)) < 0)
- {
- T t1, t2, t3;
- t1 = ui_type(1);
- t2 = fp_type(0.5f);
- t3 = fp_type(1.5f);
- eval_multiply(xx, xx);
- xx.negate();
- hyp2F1(result, t1, t2, t3, xx);
- eval_multiply(result, x);
- return;
- }
- if (xx.compare(fp_type(10)) > 0)
- {
- T t1, t2, t3;
- t1 = fp_type(0.5f);
- t2 = ui_type(1u);
- t3 = fp_type(1.5f);
- eval_multiply(xx, xx);
- eval_divide(xx, si_type(-1), xx);
- hyp2F1(result, t1, t2, t3, xx);
- eval_divide(result, x);
- if (!b_neg)
- result.negate();
- eval_ldexp(t1, get_constant_pi<T>(), -1);
- eval_add(result, t1);
- if (b_neg)
- result.negate();
- return;
- }
- // Get initial estimate using standard math function atan.
- fp_type d;
- eval_convert_to(&d, xx);
- result = fp_type(std::atan(d));
- // Newton-Raphson iteration, we should double our precision with each iteration,
- // in practice this seems to not quite work in all cases... so terminate when we
- // have at least 2/3 of the digits correct on the assumption that the correction
- // we've just added will finish the job...
- std::intmax_t current_precision = eval_ilogb(result);
- std::intmax_t target_precision = std::numeric_limits<number<T> >::is_specialized ?
- current_precision - 1 - (std::numeric_limits<number<T> >::digits * 2) / 3
- : current_precision - 1 - (boost::multiprecision::detail::digits2<number<T> >::value() * 2) / 3;
- T s, c, t;
- while (current_precision > target_precision)
- {
- eval_sin(s, result);
- eval_cos(c, result);
- eval_multiply(t, xx, c);
- eval_subtract(t, s);
- eval_multiply(s, t, c);
- eval_add(result, s);
- current_precision = eval_ilogb(s);
- if (current_precision <= (std::numeric_limits<typename T::exponent_type>::min)() + 1)
- break;
- }
- if (b_neg)
- result.negate();
- }
- template <class T>
- void eval_atan2(T& result, const T& y, const T& x)
- {
- static_assert(number_category<T>::value == number_kind_floating_point, "The atan2 function is only valid for floating point types.");
- if (&result == &y)
- {
- T temp(y);
- eval_atan2(result, temp, x);
- return;
- }
- else if (&result == &x)
- {
- T temp(x);
- eval_atan2(result, y, temp);
- return;
- }
- using ui_type = typename boost::multiprecision::detail::canonical<std::uint32_t, T>::type;
- switch (eval_fpclassify(y))
- {
- case FP_NAN:
- result = y;
- errno = EDOM;
- return;
- case FP_ZERO:
- {
- if (eval_signbit(x))
- {
- result = get_constant_pi<T>();
- if (eval_signbit(y))
- result.negate();
- }
- else
- {
- result = y; // Note we allow atan2(0,0) to be +-zero, even though it's mathematically undefined
- }
- return;
- }
- case FP_INFINITE:
- {
- if (eval_fpclassify(x) == FP_INFINITE)
- {
- if (eval_signbit(x))
- {
- // 3Pi/4
- eval_ldexp(result, get_constant_pi<T>(), -2);
- eval_subtract(result, get_constant_pi<T>());
- if (eval_get_sign(y) >= 0)
- result.negate();
- }
- else
- {
- // Pi/4
- eval_ldexp(result, get_constant_pi<T>(), -2);
- if (eval_get_sign(y) < 0)
- result.negate();
- }
- }
- else
- {
- eval_ldexp(result, get_constant_pi<T>(), -1);
- if (eval_get_sign(y) < 0)
- result.negate();
- }
- return;
- }
- }
- switch (eval_fpclassify(x))
- {
- case FP_NAN:
- result = x;
- errno = EDOM;
- return;
- case FP_ZERO:
- {
- eval_ldexp(result, get_constant_pi<T>(), -1);
- if (eval_get_sign(y) < 0)
- result.negate();
- return;
- }
- case FP_INFINITE:
- if (eval_get_sign(x) > 0)
- result = ui_type(0);
- else
- result = get_constant_pi<T>();
- if (eval_get_sign(y) < 0)
- result.negate();
- return;
- }
- T xx;
- eval_divide(xx, y, x);
- if (eval_get_sign(xx) < 0)
- xx.negate();
- eval_atan(result, xx);
- // Determine quadrant (sign) based on signs of x, y
- const bool y_neg = eval_get_sign(y) < 0;
- const bool x_neg = eval_get_sign(x) < 0;
- if (y_neg != x_neg)
- result.negate();
- if (x_neg)
- {
- if (y_neg)
- eval_subtract(result, get_constant_pi<T>());
- else
- eval_add(result, get_constant_pi<T>());
- }
- }
- template <class T, class A>
- inline typename std::enable_if<boost::multiprecision::detail::is_arithmetic<A>::value, void>::type eval_atan2(T& result, const T& x, const A& a)
- {
- using canonical_type = typename boost::multiprecision::detail::canonical<A, T>::type ;
- using cast_type = typename std::conditional<std::is_same<A, canonical_type>::value, T, canonical_type>::type;
- cast_type c;
- c = a;
- eval_atan2(result, x, c);
- }
- template <class T, class A>
- inline typename std::enable_if<boost::multiprecision::detail::is_arithmetic<A>::value, void>::type eval_atan2(T& result, const A& x, const T& a)
- {
- using canonical_type = typename boost::multiprecision::detail::canonical<A, T>::type ;
- using cast_type = typename std::conditional<std::is_same<A, canonical_type>::value, T, canonical_type>::type;
- cast_type c;
- c = x;
- eval_atan2(result, c, a);
- }
- #ifdef BOOST_MSVC
- #pragma warning(pop)
- #endif
|