1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192 |
- // Copyright 2020, Madhur Chauhan
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0.
- // (See accompanying file LICENSE_1_0.txt
- // or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_SPECIAL_FIBO_HPP
- #define BOOST_MATH_SPECIAL_FIBO_HPP
- #include <boost/math/constants/constants.hpp>
- #include <boost/math/policies/error_handling.hpp>
- #include <cmath>
- #include <limits>
- #ifdef _MSC_VER
- #pragma once
- #endif
- namespace boost {
- namespace math {
- namespace detail {
- constexpr double fib_bits_phi = 0.69424191363061730173879026;
- constexpr double fib_bits_deno = 1.1609640474436811739351597;
- } // namespace detail
- template <typename T>
- inline BOOST_MATH_CXX14_CONSTEXPR T unchecked_fibonacci(unsigned long long n) noexcept(std::is_fundamental<T>::value) {
- // This function is called by the rest and computes the actual nth fibonacci number
- // First few fibonacci numbers: 0 (0th), 1 (1st), 1 (2nd), 2 (3rd), ...
- if (n <= 2) return n == 0 ? 0 : 1;
- /*
- * This is based on the following identities by Dijkstra:
- * F(2*n-1) = F(n-1)^2 + F(n)^2
- * F(2*n) = (2*F(n-1) + F(n)) * F(n)
- * The implementation is iterative and is unrolled version of trivial recursive implementation.
- */
- unsigned long long mask = 1;
- for (int ct = 1; ct != std::numeric_limits<unsigned long long>::digits && (mask << 1) <= n; ++ct, mask <<= 1)
- ;
- T a{1}, b{1};
- for (mask >>= 1; mask; mask >>= 1) {
- T t1 = a * a;
- a = 2 * a * b - t1, b = b * b + t1;
- if (mask & n)
- t1 = b, b = b + a, a = t1; // equivalent to: swap(a,b), b += a;
- }
- return a;
- }
- template <typename T, class Policy>
- T inline BOOST_MATH_CXX14_CONSTEXPR fibonacci(unsigned long long n, const Policy &pol) {
- // check for overflow using approximation to binet's formula: F_n ~ phi^n / sqrt(5)
- if (n > 20 && n * detail::fib_bits_phi - detail::fib_bits_deno > std::numeric_limits<T>::digits)
- return policies::raise_overflow_error<T>("boost::math::fibonacci<%1%>(unsigned long long)", "Possible overflow detected.", pol);
- return unchecked_fibonacci<T>(n);
- }
- template <typename T>
- T inline BOOST_MATH_CXX14_CONSTEXPR fibonacci(unsigned long long n) {
- return fibonacci<T>(n, policies::policy<>());
- }
- // generator for next fibonacci number (see examples/reciprocal_fibonacci_constant.hpp)
- template <typename T>
- class fibonacci_generator {
- public:
- // return next fibonacci number
- T operator()() noexcept(std::is_fundamental<T>::value) {
- T ret = a;
- a = b, b = b + ret; // could've simply: swap(a, b), b += a;
- return ret;
- }
- // after set(nth), subsequent calls to the generator returns consecutive
- // fibonacci numbers starting with the nth fibonacci number
- void set(unsigned long long nth) noexcept(std::is_fundamental<T>::value) {
- n = nth;
- a = unchecked_fibonacci<T>(n);
- b = unchecked_fibonacci<T>(n + 1);
- }
- private:
- unsigned long long n = 0;
- T a = 0, b = 1;
- };
- } // namespace math
- } // namespace boost
- #endif
|