erf.hpp 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260
  1. // (C) Copyright John Maddock 2006.
  2. // Use, modification and distribution are subject to the
  3. // Boost Software License, Version 1.0. (See accompanying file
  4. // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
  5. #ifndef BOOST_MATH_SPECIAL_ERF_HPP
  6. #define BOOST_MATH_SPECIAL_ERF_HPP
  7. #ifdef _MSC_VER
  8. #pragma once
  9. #endif
  10. #include <boost/math/special_functions/math_fwd.hpp>
  11. #include <boost/math/tools/config.hpp>
  12. #include <boost/math/special_functions/gamma.hpp>
  13. #include <boost/math/tools/roots.hpp>
  14. #include <boost/math/policies/error_handling.hpp>
  15. #include <boost/math/tools/big_constant.hpp>
  16. #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128)
  17. //
  18. // This is the only way we can avoid
  19. // warning: non-standard suffix on floating constant [-Wpedantic]
  20. // when building with -Wall -pedantic. Neither __extension__
  21. // nor #pragma diagnostic ignored work :(
  22. //
  23. #pragma GCC system_header
  24. #endif
  25. namespace boost{ namespace math{
  26. namespace detail
  27. {
  28. //
  29. // Asymptotic series for large z:
  30. //
  31. template <class T>
  32. struct erf_asympt_series_t
  33. {
  34. // LCOV_EXCL_START multiprecision case only, excluded from coverage analysis
  35. erf_asympt_series_t(T z) : xx(2 * -z * z), tk(1)
  36. {
  37. BOOST_MATH_STD_USING
  38. result = -exp(-z * z) / sqrt(boost::math::constants::pi<T>());
  39. result /= z;
  40. }
  41. typedef T result_type;
  42. T operator()()
  43. {
  44. BOOST_MATH_STD_USING
  45. T r = result;
  46. result *= tk / xx;
  47. tk += 2;
  48. if( fabs(r) < fabs(result))
  49. result = 0;
  50. return r;
  51. }
  52. // LCOV_EXCL_STOP
  53. private:
  54. T result;
  55. T xx;
  56. int tk;
  57. };
  58. //
  59. // How large z has to be in order to ensure that the series converges:
  60. //
  61. template <class T>
  62. inline float erf_asymptotic_limit_N(const T&)
  63. {
  64. return (std::numeric_limits<float>::max)();
  65. }
  66. inline float erf_asymptotic_limit_N(const std::integral_constant<int, 24>&)
  67. {
  68. return 2.8F;
  69. }
  70. inline float erf_asymptotic_limit_N(const std::integral_constant<int, 53>&)
  71. {
  72. return 4.3F;
  73. }
  74. inline float erf_asymptotic_limit_N(const std::integral_constant<int, 64>&)
  75. {
  76. return 4.8F;
  77. }
  78. inline float erf_asymptotic_limit_N(const std::integral_constant<int, 106>&)
  79. {
  80. return 6.5F;
  81. }
  82. inline float erf_asymptotic_limit_N(const std::integral_constant<int, 113>&)
  83. {
  84. return 6.8F;
  85. }
  86. template <class T, class Policy>
  87. inline T erf_asymptotic_limit()
  88. {
  89. typedef typename policies::precision<T, Policy>::type precision_type;
  90. typedef std::integral_constant<int,
  91. precision_type::value <= 0 ? 0 :
  92. precision_type::value <= 24 ? 24 :
  93. precision_type::value <= 53 ? 53 :
  94. precision_type::value <= 64 ? 64 :
  95. precision_type::value <= 113 ? 113 : 0
  96. > tag_type;
  97. return erf_asymptotic_limit_N(tag_type());
  98. }
  99. template <class T>
  100. struct erf_series_near_zero
  101. {
  102. typedef T result_type;
  103. T term;
  104. T zz;
  105. int k;
  106. erf_series_near_zero(const T& z) : term(z), zz(-z * z), k(0) {}
  107. T operator()()
  108. {
  109. T result = term / (2 * k + 1);
  110. term *= zz / ++k;
  111. return result;
  112. }
  113. };
  114. template <class T, class Policy>
  115. T erf_series_near_zero_sum(const T& x, const Policy& pol)
  116. {
  117. //
  118. // We need Kahan summation here, otherwise the errors grow fairly quickly.
  119. // This method is *much* faster than the alternatives even so.
  120. //
  121. erf_series_near_zero<T> sum(x);
  122. std::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
  123. T result = constants::two_div_root_pi<T>() * tools::kahan_sum_series(sum, tools::digits<T>(), max_iter);
  124. policies::check_series_iterations<T>("boost::math::erf<%1%>(%1%, %1%)", max_iter, pol);
  125. return result;
  126. }
  127. template <class T, class Policy, class Tag>
  128. T erf_imp(T z, bool invert, const Policy& pol, const Tag& t)
  129. {
  130. // LCOV_EXCL_START multiprecision case only, excluded from coverage analysis
  131. BOOST_MATH_STD_USING
  132. BOOST_MATH_INSTRUMENT_CODE("Generic erf_imp called");
  133. if ((boost::math::isnan)(z))
  134. return policies::raise_domain_error("boost::math::erf<%1%>(%1%)", "Expected a finite argument but got %1%", z, pol);
  135. if(z < 0)
  136. {
  137. if(!invert)
  138. return -erf_imp(T(-z), invert, pol, t);
  139. else
  140. return 1 + erf_imp(T(-z), false, pol, t);
  141. }
  142. T result;
  143. if(!invert && (z > detail::erf_asymptotic_limit<T, Policy>()))
  144. {
  145. detail::erf_asympt_series_t<T> s(z);
  146. std::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
  147. result = boost::math::tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter, 1);
  148. policies::check_series_iterations<T>("boost::math::erf<%1%>(%1%, %1%)", max_iter, pol);
  149. }
  150. else
  151. {
  152. T x = z * z;
  153. if(z < 1.3f)
  154. {
  155. // Compute P:
  156. // This is actually good for z p to 2 or so, but the cutoff given seems
  157. // to be the best compromise. Performance wise, this is way quicker than anything else...
  158. result = erf_series_near_zero_sum(z, pol);
  159. }
  160. else if(x > 1 / tools::epsilon<T>())
  161. {
  162. // http://functions.wolfram.com/06.27.06.0006.02
  163. invert = !invert;
  164. result = exp(-x) / (constants::root_pi<T>() * z);
  165. }
  166. else
  167. {
  168. // Compute Q:
  169. invert = !invert;
  170. result = z * exp(-x);
  171. result /= boost::math::constants::root_pi<T>();
  172. result *= upper_gamma_fraction(T(0.5f), x, policies::get_epsilon<T, Policy>());
  173. }
  174. }
  175. if(invert)
  176. result = 1 - result;
  177. return result;
  178. // LCOV_EXCL_STOP
  179. }
  180. template <class T, class Policy>
  181. T erf_imp(T z, bool invert, const Policy& pol, const std::integral_constant<int, 53>& t)
  182. {
  183. BOOST_MATH_STD_USING
  184. BOOST_MATH_INSTRUMENT_CODE("53-bit precision erf_imp called");
  185. if ((boost::math::isnan)(z))
  186. return policies::raise_domain_error("boost::math::erf<%1%>(%1%)", "Expected a finite argument but got %1%", z, pol);
  187. if(z < 0)
  188. {
  189. if(!invert)
  190. return -erf_imp(T(-z), invert, pol, t);
  191. else if(z < T(-0.5))
  192. return 2 - erf_imp(T(-z), invert, pol, t);
  193. else
  194. return 1 + erf_imp(T(-z), false, pol, t);
  195. }
  196. T result;
  197. //
  198. // Big bunch of selection statements now to pick
  199. // which implementation to use,
  200. // try to put most likely options first:
  201. //
  202. if(z < T(0.5))
  203. {
  204. //
  205. // We're going to calculate erf:
  206. //
  207. if(z < T(1e-10))
  208. {
  209. if(z == 0)
  210. {
  211. result = T(0);
  212. }
  213. else
  214. {
  215. static const T c = BOOST_MATH_BIG_CONSTANT(T, 53, 0.003379167095512573896158903121545171688); // LCOV_EXCL_LINE
  216. result = static_cast<T>(z * 1.125f + z * c);
  217. }
  218. }
  219. else
  220. {
  221. // Maximum Deviation Found: 1.561e-17
  222. // Expected Error Term: 1.561e-17
  223. // Maximum Relative Change in Control Points: 1.155e-04
  224. // Max Error found at double precision = 2.961182e-17
  225. // LCOV_EXCL_START
  226. static const T Y = 1.044948577880859375f;
  227. static const T P[] = {
  228. BOOST_MATH_BIG_CONSTANT(T, 53, 0.0834305892146531832907),
  229. BOOST_MATH_BIG_CONSTANT(T, 53, -0.338165134459360935041),
  230. BOOST_MATH_BIG_CONSTANT(T, 53, -0.0509990735146777432841),
  231. BOOST_MATH_BIG_CONSTANT(T, 53, -0.00772758345802133288487),
  232. BOOST_MATH_BIG_CONSTANT(T, 53, -0.000322780120964605683831),
  233. };
  234. static const T Q[] = {
  235. BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
  236. BOOST_MATH_BIG_CONSTANT(T, 53, 0.455004033050794024546),
  237. BOOST_MATH_BIG_CONSTANT(T, 53, 0.0875222600142252549554),
  238. BOOST_MATH_BIG_CONSTANT(T, 53, 0.00858571925074406212772),
  239. BOOST_MATH_BIG_CONSTANT(T, 53, 0.000370900071787748000569),
  240. };
  241. // LCOV_EXCL_STOP
  242. T zz = z * z;
  243. result = z * (Y + tools::evaluate_polynomial(P, zz) / tools::evaluate_polynomial(Q, zz));
  244. }
  245. }
  246. else if(invert ? (z < 28) : (z < 5.93f))
  247. {
  248. //
  249. // We'll be calculating erfc:
  250. //
  251. invert = !invert;
  252. if(z < 1.5f)
  253. {
  254. // Maximum Deviation Found: 3.702e-17
  255. // Expected Error Term: 3.702e-17
  256. // Maximum Relative Change in Control Points: 2.845e-04
  257. // Max Error found at double precision = 4.841816e-17
  258. // LCOV_EXCL_START
  259. static const T Y = 0.405935764312744140625f;
  260. static const T P[] = {
  261. BOOST_MATH_BIG_CONSTANT(T, 53, -0.098090592216281240205),
  262. BOOST_MATH_BIG_CONSTANT(T, 53, 0.178114665841120341155),
  263. BOOST_MATH_BIG_CONSTANT(T, 53, 0.191003695796775433986),
  264. BOOST_MATH_BIG_CONSTANT(T, 53, 0.0888900368967884466578),
  265. BOOST_MATH_BIG_CONSTANT(T, 53, 0.0195049001251218801359),
  266. BOOST_MATH_BIG_CONSTANT(T, 53, 0.00180424538297014223957),
  267. };
  268. static const T Q[] = {
  269. BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
  270. BOOST_MATH_BIG_CONSTANT(T, 53, 1.84759070983002217845),
  271. BOOST_MATH_BIG_CONSTANT(T, 53, 1.42628004845511324508),
  272. BOOST_MATH_BIG_CONSTANT(T, 53, 0.578052804889902404909),
  273. BOOST_MATH_BIG_CONSTANT(T, 53, 0.12385097467900864233),
  274. BOOST_MATH_BIG_CONSTANT(T, 53, 0.0113385233577001411017),
  275. BOOST_MATH_BIG_CONSTANT(T, 53, 0.337511472483094676155e-5),
  276. };
  277. // LCOV_EXCL_STOP
  278. BOOST_MATH_INSTRUMENT_VARIABLE(Y);
  279. BOOST_MATH_INSTRUMENT_VARIABLE(P[0]);
  280. BOOST_MATH_INSTRUMENT_VARIABLE(Q[0]);
  281. BOOST_MATH_INSTRUMENT_VARIABLE(z);
  282. result = Y + tools::evaluate_polynomial(P, T(z - T(0.5))) / tools::evaluate_polynomial(Q, T(z - T(0.5)));
  283. BOOST_MATH_INSTRUMENT_VARIABLE(result);
  284. result *= exp(-z * z) / z;
  285. BOOST_MATH_INSTRUMENT_VARIABLE(result);
  286. }
  287. else if(z < 2.5f)
  288. {
  289. // Max Error found at double precision = 6.599585e-18
  290. // Maximum Deviation Found: 3.909e-18
  291. // Expected Error Term: 3.909e-18
  292. // Maximum Relative Change in Control Points: 9.886e-05
  293. // LCOV_EXCL_START
  294. static const T Y = 0.50672817230224609375f;
  295. static const T P[] = {
  296. BOOST_MATH_BIG_CONSTANT(T, 53, -0.0243500476207698441272),
  297. BOOST_MATH_BIG_CONSTANT(T, 53, 0.0386540375035707201728),
  298. BOOST_MATH_BIG_CONSTANT(T, 53, 0.04394818964209516296),
  299. BOOST_MATH_BIG_CONSTANT(T, 53, 0.0175679436311802092299),
  300. BOOST_MATH_BIG_CONSTANT(T, 53, 0.00323962406290842133584),
  301. BOOST_MATH_BIG_CONSTANT(T, 53, 0.000235839115596880717416),
  302. };
  303. static const T Q[] = {
  304. BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
  305. BOOST_MATH_BIG_CONSTANT(T, 53, 1.53991494948552447182),
  306. BOOST_MATH_BIG_CONSTANT(T, 53, 0.982403709157920235114),
  307. BOOST_MATH_BIG_CONSTANT(T, 53, 0.325732924782444448493),
  308. BOOST_MATH_BIG_CONSTANT(T, 53, 0.0563921837420478160373),
  309. BOOST_MATH_BIG_CONSTANT(T, 53, 0.00410369723978904575884),
  310. };
  311. // LCOV_EXCL_STOP
  312. result = Y + tools::evaluate_polynomial(P, T(z - T(1.5))) / tools::evaluate_polynomial(Q, z - T(1.5));
  313. T hi, lo;
  314. int expon;
  315. hi = floor(ldexp(frexp(z, &expon), 26));
  316. hi = ldexp(hi, expon - 26);
  317. lo = z - hi;
  318. T sq = z * z;
  319. T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
  320. result *= exp(-sq) * exp(-err_sqr) / z;
  321. }
  322. else if(z < 4.5f)
  323. {
  324. // Maximum Deviation Found: 1.512e-17
  325. // Expected Error Term: 1.512e-17
  326. // Maximum Relative Change in Control Points: 2.222e-04
  327. // Max Error found at double precision = 2.062515e-17
  328. // LCOV_EXCL_START
  329. static const T Y = 0.5405750274658203125f;
  330. static const T P[] = {
  331. BOOST_MATH_BIG_CONSTANT(T, 53, 0.00295276716530971662634),
  332. BOOST_MATH_BIG_CONSTANT(T, 53, 0.0137384425896355332126),
  333. BOOST_MATH_BIG_CONSTANT(T, 53, 0.00840807615555585383007),
  334. BOOST_MATH_BIG_CONSTANT(T, 53, 0.00212825620914618649141),
  335. BOOST_MATH_BIG_CONSTANT(T, 53, 0.000250269961544794627958),
  336. BOOST_MATH_BIG_CONSTANT(T, 53, 0.113212406648847561139e-4),
  337. };
  338. static const T Q[] = {
  339. BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
  340. BOOST_MATH_BIG_CONSTANT(T, 53, 1.04217814166938418171),
  341. BOOST_MATH_BIG_CONSTANT(T, 53, 0.442597659481563127003),
  342. BOOST_MATH_BIG_CONSTANT(T, 53, 0.0958492726301061423444),
  343. BOOST_MATH_BIG_CONSTANT(T, 53, 0.0105982906484876531489),
  344. BOOST_MATH_BIG_CONSTANT(T, 53, 0.000479411269521714493907),
  345. };
  346. // LCOV_EXCL_STOP
  347. result = Y + tools::evaluate_polynomial(P, T(z - T(3.5))) / tools::evaluate_polynomial(Q, z - T(3.5));
  348. T hi, lo;
  349. int expon;
  350. hi = floor(ldexp(frexp(z, &expon), 26));
  351. hi = ldexp(hi, expon - 26);
  352. lo = z - hi;
  353. T sq = z * z;
  354. T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
  355. result *= exp(-sq) * exp(-err_sqr) / z;
  356. }
  357. else
  358. {
  359. // Max Error found at double precision = 2.997958e-17
  360. // Maximum Deviation Found: 2.860e-17
  361. // Expected Error Term: 2.859e-17
  362. // Maximum Relative Change in Control Points: 1.357e-05
  363. // LCOV_EXCL_START
  364. static const T Y = 0.5579090118408203125f;
  365. static const T P[] = {
  366. BOOST_MATH_BIG_CONSTANT(T, 53, 0.00628057170626964891937),
  367. BOOST_MATH_BIG_CONSTANT(T, 53, 0.0175389834052493308818),
  368. BOOST_MATH_BIG_CONSTANT(T, 53, -0.212652252872804219852),
  369. BOOST_MATH_BIG_CONSTANT(T, 53, -0.687717681153649930619),
  370. BOOST_MATH_BIG_CONSTANT(T, 53, -2.5518551727311523996),
  371. BOOST_MATH_BIG_CONSTANT(T, 53, -3.22729451764143718517),
  372. BOOST_MATH_BIG_CONSTANT(T, 53, -2.8175401114513378771),
  373. };
  374. static const T Q[] = {
  375. BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
  376. BOOST_MATH_BIG_CONSTANT(T, 53, 2.79257750980575282228),
  377. BOOST_MATH_BIG_CONSTANT(T, 53, 11.0567237927800161565),
  378. BOOST_MATH_BIG_CONSTANT(T, 53, 15.930646027911794143),
  379. BOOST_MATH_BIG_CONSTANT(T, 53, 22.9367376522880577224),
  380. BOOST_MATH_BIG_CONSTANT(T, 53, 13.5064170191802889145),
  381. BOOST_MATH_BIG_CONSTANT(T, 53, 5.48409182238641741584),
  382. };
  383. // LCOV_EXCL_STOP
  384. result = Y + tools::evaluate_polynomial(P, T(1 / z)) / tools::evaluate_polynomial(Q, T(1 / z));
  385. T hi, lo;
  386. int expon;
  387. hi = floor(ldexp(frexp(z, &expon), 26));
  388. hi = ldexp(hi, expon - 26);
  389. lo = z - hi;
  390. T sq = z * z;
  391. T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
  392. result *= exp(-sq) * exp(-err_sqr) / z;
  393. }
  394. }
  395. else
  396. {
  397. //
  398. // Any value of z larger than 28 will underflow to zero:
  399. //
  400. result = 0;
  401. invert = !invert;
  402. }
  403. if(invert)
  404. {
  405. result = 1 - result;
  406. }
  407. return result;
  408. } // template <class T, class Lanczos>T erf_imp(T z, bool invert, const Lanczos& l, const std::integral_constant<int, 53>& t)
  409. template <class T, class Policy>
  410. T erf_imp(T z, bool invert, const Policy& pol, const std::integral_constant<int, 64>& t)
  411. {
  412. BOOST_MATH_STD_USING
  413. BOOST_MATH_INSTRUMENT_CODE("64-bit precision erf_imp called");
  414. if ((boost::math::isnan)(z))
  415. return policies::raise_domain_error("boost::math::erf<%1%>(%1%)", "Expected a finite argument but got %1%", z, pol);
  416. if(z < 0)
  417. {
  418. if(!invert)
  419. return -erf_imp(T(-z), invert, pol, t);
  420. else if(z < -0.5)
  421. return 2 - erf_imp(T(-z), invert, pol, t);
  422. else
  423. return 1 + erf_imp(T(-z), false, pol, t);
  424. }
  425. T result;
  426. //
  427. // Big bunch of selection statements now to pick which
  428. // implementation to use, try to put most likely options
  429. // first:
  430. //
  431. if(z < 0.5)
  432. {
  433. //
  434. // We're going to calculate erf:
  435. //
  436. if(z == 0)
  437. {
  438. result = 0;
  439. }
  440. else if(z < 1e-10)
  441. {
  442. static const T c = BOOST_MATH_BIG_CONSTANT(T, 64, 0.003379167095512573896158903121545171688); // LCOV_EXCL_LINE
  443. result = z * 1.125 + z * c;
  444. }
  445. else
  446. {
  447. // Max Error found at long double precision = 1.623299e-20
  448. // Maximum Deviation Found: 4.326e-22
  449. // Expected Error Term: -4.326e-22
  450. // Maximum Relative Change in Control Points: 1.474e-04
  451. // LCOV_EXCL_START
  452. static const T Y = 1.044948577880859375f;
  453. static const T P[] = {
  454. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0834305892146531988966),
  455. BOOST_MATH_BIG_CONSTANT(T, 64, -0.338097283075565413695),
  456. BOOST_MATH_BIG_CONSTANT(T, 64, -0.0509602734406067204596),
  457. BOOST_MATH_BIG_CONSTANT(T, 64, -0.00904906346158537794396),
  458. BOOST_MATH_BIG_CONSTANT(T, 64, -0.000489468651464798669181),
  459. BOOST_MATH_BIG_CONSTANT(T, 64, -0.200305626366151877759e-4),
  460. };
  461. static const T Q[] = {
  462. BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
  463. BOOST_MATH_BIG_CONSTANT(T, 64, 0.455817300515875172439),
  464. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0916537354356241792007),
  465. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0102722652675910031202),
  466. BOOST_MATH_BIG_CONSTANT(T, 64, 0.000650511752687851548735),
  467. BOOST_MATH_BIG_CONSTANT(T, 64, 0.189532519105655496778e-4),
  468. };
  469. // LCOV_EXCL_STOP
  470. result = z * (Y + tools::evaluate_polynomial(P, T(z * z)) / tools::evaluate_polynomial(Q, T(z * z)));
  471. }
  472. }
  473. else if(invert ? (z < 110) : (z < 6.6f))
  474. {
  475. //
  476. // We'll be calculating erfc:
  477. //
  478. invert = !invert;
  479. if(z < 1.5)
  480. {
  481. // Max Error found at long double precision = 3.239590e-20
  482. // Maximum Deviation Found: 2.241e-20
  483. // Expected Error Term: -2.241e-20
  484. // Maximum Relative Change in Control Points: 5.110e-03
  485. // LCOV_EXCL_START
  486. static const T Y = 0.405935764312744140625f;
  487. static const T P[] = {
  488. BOOST_MATH_BIG_CONSTANT(T, 64, -0.0980905922162812031672),
  489. BOOST_MATH_BIG_CONSTANT(T, 64, 0.159989089922969141329),
  490. BOOST_MATH_BIG_CONSTANT(T, 64, 0.222359821619935712378),
  491. BOOST_MATH_BIG_CONSTANT(T, 64, 0.127303921703577362312),
  492. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0384057530342762400273),
  493. BOOST_MATH_BIG_CONSTANT(T, 64, 0.00628431160851156719325),
  494. BOOST_MATH_BIG_CONSTANT(T, 64, 0.000441266654514391746428),
  495. BOOST_MATH_BIG_CONSTANT(T, 64, 0.266689068336295642561e-7),
  496. };
  497. static const T Q[] = {
  498. BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
  499. BOOST_MATH_BIG_CONSTANT(T, 64, 2.03237474985469469291),
  500. BOOST_MATH_BIG_CONSTANT(T, 64, 1.78355454954969405222),
  501. BOOST_MATH_BIG_CONSTANT(T, 64, 0.867940326293760578231),
  502. BOOST_MATH_BIG_CONSTANT(T, 64, 0.248025606990021698392),
  503. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0396649631833002269861),
  504. BOOST_MATH_BIG_CONSTANT(T, 64, 0.00279220237309449026796),
  505. };
  506. // LCOV_EXCL_STOP
  507. result = Y + tools::evaluate_polynomial(P, T(z - 0.5f)) / tools::evaluate_polynomial(Q, T(z - 0.5f));
  508. T hi, lo;
  509. int expon;
  510. hi = floor(ldexp(frexp(z, &expon), 32));
  511. hi = ldexp(hi, expon - 32);
  512. lo = z - hi;
  513. T sq = z * z;
  514. T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
  515. result *= exp(-sq) * exp(-err_sqr) / z;
  516. }
  517. else if(z < 2.5)
  518. {
  519. // Max Error found at long double precision = 3.686211e-21
  520. // Maximum Deviation Found: 1.495e-21
  521. // Expected Error Term: -1.494e-21
  522. // Maximum Relative Change in Control Points: 1.793e-04
  523. // LCOV_EXCL_START
  524. static const T Y = 0.50672817230224609375f;
  525. static const T P[] = {
  526. BOOST_MATH_BIG_CONSTANT(T, 64, -0.024350047620769840217),
  527. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0343522687935671451309),
  528. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0505420824305544949541),
  529. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0257479325917757388209),
  530. BOOST_MATH_BIG_CONSTANT(T, 64, 0.00669349844190354356118),
  531. BOOST_MATH_BIG_CONSTANT(T, 64, 0.00090807914416099524444),
  532. BOOST_MATH_BIG_CONSTANT(T, 64, 0.515917266698050027934e-4),
  533. };
  534. static const T Q[] = {
  535. BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
  536. BOOST_MATH_BIG_CONSTANT(T, 64, 1.71657861671930336344),
  537. BOOST_MATH_BIG_CONSTANT(T, 64, 1.26409634824280366218),
  538. BOOST_MATH_BIG_CONSTANT(T, 64, 0.512371437838969015941),
  539. BOOST_MATH_BIG_CONSTANT(T, 64, 0.120902623051120950935),
  540. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0158027197831887485261),
  541. BOOST_MATH_BIG_CONSTANT(T, 64, 0.000897871370778031611439),
  542. };
  543. // LCOV_EXCL_STOP
  544. result = Y + tools::evaluate_polynomial(P, T(z - 1.5f)) / tools::evaluate_polynomial(Q, T(z - 1.5f));
  545. T hi, lo;
  546. int expon;
  547. hi = floor(ldexp(frexp(z, &expon), 32));
  548. hi = ldexp(hi, expon - 32);
  549. lo = z - hi;
  550. T sq = z * z;
  551. T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
  552. result *= exp(-sq) * exp(-err_sqr) / z;
  553. }
  554. else if(z < 4.5)
  555. {
  556. // Maximum Deviation Found: 1.107e-20
  557. // Expected Error Term: -1.106e-20
  558. // Maximum Relative Change in Control Points: 1.709e-04
  559. // Max Error found at long double precision = 1.446908e-20
  560. // LCOV_EXCL_START
  561. static const T Y = 0.5405750274658203125f;
  562. static const T P[] = {
  563. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0029527671653097284033),
  564. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0141853245895495604051),
  565. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0104959584626432293901),
  566. BOOST_MATH_BIG_CONSTANT(T, 64, 0.00343963795976100077626),
  567. BOOST_MATH_BIG_CONSTANT(T, 64, 0.00059065441194877637899),
  568. BOOST_MATH_BIG_CONSTANT(T, 64, 0.523435380636174008685e-4),
  569. BOOST_MATH_BIG_CONSTANT(T, 64, 0.189896043050331257262e-5),
  570. };
  571. static const T Q[] = {
  572. BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
  573. BOOST_MATH_BIG_CONSTANT(T, 64, 1.19352160185285642574),
  574. BOOST_MATH_BIG_CONSTANT(T, 64, 0.603256964363454392857),
  575. BOOST_MATH_BIG_CONSTANT(T, 64, 0.165411142458540585835),
  576. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0259729870946203166468),
  577. BOOST_MATH_BIG_CONSTANT(T, 64, 0.00221657568292893699158),
  578. BOOST_MATH_BIG_CONSTANT(T, 64, 0.804149464190309799804e-4),
  579. };
  580. // LCOV_EXCL_STOP
  581. result = Y + tools::evaluate_polynomial(P, T(z - 3.5f)) / tools::evaluate_polynomial(Q, T(z - 3.5f));
  582. T hi, lo;
  583. int expon;
  584. hi = floor(ldexp(frexp(z, &expon), 32));
  585. hi = ldexp(hi, expon - 32);
  586. lo = z - hi;
  587. T sq = z * z;
  588. T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
  589. result *= exp(-sq) * exp(-err_sqr) / z;
  590. }
  591. else
  592. {
  593. // Max Error found at long double precision = 7.961166e-21
  594. // Maximum Deviation Found: 6.677e-21
  595. // Expected Error Term: 6.676e-21
  596. // Maximum Relative Change in Control Points: 2.319e-05
  597. // LCOV_EXCL_START
  598. static const T Y = 0.55825519561767578125f;
  599. static const T P[] = {
  600. BOOST_MATH_BIG_CONSTANT(T, 64, 0.00593438793008050214106),
  601. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0280666231009089713937),
  602. BOOST_MATH_BIG_CONSTANT(T, 64, -0.141597835204583050043),
  603. BOOST_MATH_BIG_CONSTANT(T, 64, -0.978088201154300548842),
  604. BOOST_MATH_BIG_CONSTANT(T, 64, -5.47351527796012049443),
  605. BOOST_MATH_BIG_CONSTANT(T, 64, -13.8677304660245326627),
  606. BOOST_MATH_BIG_CONSTANT(T, 64, -27.1274948720539821722),
  607. BOOST_MATH_BIG_CONSTANT(T, 64, -29.2545152747009461519),
  608. BOOST_MATH_BIG_CONSTANT(T, 64, -16.8865774499799676937),
  609. };
  610. static const T Q[] = {
  611. BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
  612. BOOST_MATH_BIG_CONSTANT(T, 64, 4.72948911186645394541),
  613. BOOST_MATH_BIG_CONSTANT(T, 64, 23.6750543147695749212),
  614. BOOST_MATH_BIG_CONSTANT(T, 64, 60.0021517335693186785),
  615. BOOST_MATH_BIG_CONSTANT(T, 64, 131.766251645149522868),
  616. BOOST_MATH_BIG_CONSTANT(T, 64, 178.167924971283482513),
  617. BOOST_MATH_BIG_CONSTANT(T, 64, 182.499390505915222699),
  618. BOOST_MATH_BIG_CONSTANT(T, 64, 104.365251479578577989),
  619. BOOST_MATH_BIG_CONSTANT(T, 64, 30.8365511891224291717),
  620. };
  621. // LCOV_EXCL_STOP
  622. result = Y + tools::evaluate_polynomial(P, T(1 / z)) / tools::evaluate_polynomial(Q, T(1 / z));
  623. T hi, lo;
  624. int expon;
  625. hi = floor(ldexp(frexp(z, &expon), 32));
  626. hi = ldexp(hi, expon - 32);
  627. lo = z - hi;
  628. T sq = z * z;
  629. T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
  630. result *= exp(-sq) * exp(-err_sqr) / z;
  631. }
  632. }
  633. else
  634. {
  635. //
  636. // Any value of z larger than 110 will underflow to zero:
  637. //
  638. result = 0;
  639. invert = !invert;
  640. }
  641. if(invert)
  642. {
  643. result = 1 - result;
  644. }
  645. return result;
  646. } // template <class T, class Lanczos>T erf_imp(T z, bool invert, const Lanczos& l, const std::integral_constant<int, 64>& t)
  647. template <class T, class Policy>
  648. T erf_imp(T z, bool invert, const Policy& pol, const std::integral_constant<int, 113>& t)
  649. {
  650. BOOST_MATH_STD_USING
  651. BOOST_MATH_INSTRUMENT_CODE("113-bit precision erf_imp called");
  652. if ((boost::math::isnan)(z))
  653. return policies::raise_domain_error("boost::math::erf<%1%>(%1%)", "Expected a finite argument but got %1%", z, pol);
  654. if(z < 0)
  655. {
  656. if (!invert)
  657. return -erf_imp(T(-z), invert, pol, t); // LCOV_EXCL_LINE confirmed as covered, not sure why lcov does see it.
  658. else if(z < -0.5)
  659. return 2 - erf_imp(T(-z), invert, pol, t);
  660. else
  661. return 1 + erf_imp(T(-z), false, pol, t);
  662. }
  663. T result;
  664. //
  665. // Big bunch of selection statements now to pick which
  666. // implementation to use, try to put most likely options
  667. // first:
  668. //
  669. if(z < 0.5)
  670. {
  671. //
  672. // We're going to calculate erf:
  673. //
  674. if(z == 0)
  675. {
  676. result = 0;
  677. }
  678. else if(z < 1e-20)
  679. {
  680. static const T c = BOOST_MATH_BIG_CONSTANT(T, 113, 0.003379167095512573896158903121545171688); // LCOV_EXCL_LINE
  681. result = z * 1.125 + z * c; // LCOV_EXCL_LINE confirmed as covered, not sure why lcov doesn't see this.
  682. }
  683. else
  684. {
  685. // Max Error found at long double precision = 2.342380e-35
  686. // Maximum Deviation Found: 6.124e-36
  687. // Expected Error Term: -6.124e-36
  688. // Maximum Relative Change in Control Points: 3.492e-10
  689. // LCOV_EXCL_START
  690. static const T Y = 1.0841522216796875f;
  691. static const T P[] = {
  692. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0442269454158250738961589031215451778),
  693. BOOST_MATH_BIG_CONSTANT(T, 113, -0.35549265736002144875335323556961233),
  694. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0582179564566667896225454670863270393),
  695. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0112694696904802304229950538453123925),
  696. BOOST_MATH_BIG_CONSTANT(T, 113, -0.000805730648981801146251825329609079099),
  697. BOOST_MATH_BIG_CONSTANT(T, 113, -0.566304966591936566229702842075966273e-4),
  698. BOOST_MATH_BIG_CONSTANT(T, 113, -0.169655010425186987820201021510002265e-5),
  699. BOOST_MATH_BIG_CONSTANT(T, 113, -0.344448249920445916714548295433198544e-7),
  700. };
  701. static const T Q[] = {
  702. BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
  703. BOOST_MATH_BIG_CONSTANT(T, 113, 0.466542092785657604666906909196052522),
  704. BOOST_MATH_BIG_CONSTANT(T, 113, 0.100005087012526447295176964142107611),
  705. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0128341535890117646540050072234142603),
  706. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00107150448466867929159660677016658186),
  707. BOOST_MATH_BIG_CONSTANT(T, 113, 0.586168368028999183607733369248338474e-4),
  708. BOOST_MATH_BIG_CONSTANT(T, 113, 0.196230608502104324965623171516808796e-5),
  709. BOOST_MATH_BIG_CONSTANT(T, 113, 0.313388521582925207734229967907890146e-7),
  710. };
  711. // LCOV_EXCL_STOP
  712. result = z * (Y + tools::evaluate_polynomial(P, T(z * z)) / tools::evaluate_polynomial(Q, T(z * z)));
  713. }
  714. }
  715. else if(invert ? (z < 110) : (z < 8.65f))
  716. {
  717. //
  718. // We'll be calculating erfc:
  719. //
  720. invert = !invert;
  721. if(z < 1)
  722. {
  723. // Max Error found at long double precision = 3.246278e-35
  724. // Maximum Deviation Found: 1.388e-35
  725. // Expected Error Term: 1.387e-35
  726. // Maximum Relative Change in Control Points: 6.127e-05
  727. // LCOV_EXCL_START
  728. static const T Y = 0.371877193450927734375f;
  729. static const T P[] = {
  730. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0640320213544647969396032886581290455),
  731. BOOST_MATH_BIG_CONSTANT(T, 113, 0.200769874440155895637857443946706731),
  732. BOOST_MATH_BIG_CONSTANT(T, 113, 0.378447199873537170666487408805779826),
  733. BOOST_MATH_BIG_CONSTANT(T, 113, 0.30521399466465939450398642044975127),
  734. BOOST_MATH_BIG_CONSTANT(T, 113, 0.146890026406815277906781824723458196),
  735. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0464837937749539978247589252732769567),
  736. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00987895759019540115099100165904822903),
  737. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00137507575429025512038051025154301132),
  738. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0001144764551085935580772512359680516),
  739. BOOST_MATH_BIG_CONSTANT(T, 113, 0.436544865032836914773944382339900079e-5),
  740. };
  741. static const T Q[] = {
  742. BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
  743. BOOST_MATH_BIG_CONSTANT(T, 113, 2.47651182872457465043733800302427977),
  744. BOOST_MATH_BIG_CONSTANT(T, 113, 2.78706486002517996428836400245547955),
  745. BOOST_MATH_BIG_CONSTANT(T, 113, 1.87295924621659627926365005293130693),
  746. BOOST_MATH_BIG_CONSTANT(T, 113, 0.829375825174365625428280908787261065),
  747. BOOST_MATH_BIG_CONSTANT(T, 113, 0.251334771307848291593780143950311514),
  748. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0522110268876176186719436765734722473),
  749. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00718332151250963182233267040106902368),
  750. BOOST_MATH_BIG_CONSTANT(T, 113, 0.000595279058621482041084986219276392459),
  751. BOOST_MATH_BIG_CONSTANT(T, 113, 0.226988669466501655990637599399326874e-4),
  752. BOOST_MATH_BIG_CONSTANT(T, 113, 0.270666232259029102353426738909226413e-10),
  753. };
  754. // LCOV_EXCL_STOP
  755. result = Y + tools::evaluate_polynomial(P, T(z - 0.5f)) / tools::evaluate_polynomial(Q, T(z - 0.5f));
  756. T hi, lo; // LCOV_EXCL_LINE
  757. int expon;
  758. hi = floor(ldexp(frexp(z, &expon), 56));
  759. hi = ldexp(hi, expon - 56);
  760. lo = z - hi;
  761. T sq = z * z; // LCOV_EXCL_LINE strangely not seen by lcov.
  762. T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
  763. result *= exp(-sq) * exp(-err_sqr) / z;
  764. }
  765. else if(z < 1.5)
  766. {
  767. // Max Error found at long double precision = 2.215785e-35
  768. // Maximum Deviation Found: 1.539e-35
  769. // Expected Error Term: 1.538e-35
  770. // Maximum Relative Change in Control Points: 6.104e-05
  771. // LCOV_EXCL_START
  772. static const T Y = 0.45658016204833984375f;
  773. static const T P[] = {
  774. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0289965858925328393392496555094848345),
  775. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0868181194868601184627743162571779226),
  776. BOOST_MATH_BIG_CONSTANT(T, 113, 0.169373435121178901746317404936356745),
  777. BOOST_MATH_BIG_CONSTANT(T, 113, 0.13350446515949251201104889028133486),
  778. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0617447837290183627136837688446313313),
  779. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0185618495228251406703152962489700468),
  780. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00371949406491883508764162050169531013),
  781. BOOST_MATH_BIG_CONSTANT(T, 113, 0.000485121708792921297742105775823900772),
  782. BOOST_MATH_BIG_CONSTANT(T, 113, 0.376494706741453489892108068231400061e-4),
  783. BOOST_MATH_BIG_CONSTANT(T, 113, 0.133166058052466262415271732172490045e-5),
  784. };
  785. static const T Q[] = {
  786. BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
  787. BOOST_MATH_BIG_CONSTANT(T, 113, 2.32970330146503867261275580968135126),
  788. BOOST_MATH_BIG_CONSTANT(T, 113, 2.46325715420422771961250513514928746),
  789. BOOST_MATH_BIG_CONSTANT(T, 113, 1.55307882560757679068505047390857842),
  790. BOOST_MATH_BIG_CONSTANT(T, 113, 0.644274289865972449441174485441409076),
  791. BOOST_MATH_BIG_CONSTANT(T, 113, 0.182609091063258208068606847453955649),
  792. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0354171651271241474946129665801606795),
  793. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00454060370165285246451879969534083997),
  794. BOOST_MATH_BIG_CONSTANT(T, 113, 0.000349871943711566546821198612518656486),
  795. BOOST_MATH_BIG_CONSTANT(T, 113, 0.123749319840299552925421880481085392e-4),
  796. };
  797. // LCOV_EXCL_STOP
  798. result = Y + tools::evaluate_polynomial(P, T(z - 1.0f)) / tools::evaluate_polynomial(Q, T(z - 1.0f));
  799. T hi, lo; // LCOV_EXCL_LINE
  800. int expon;
  801. hi = floor(ldexp(frexp(z, &expon), 56));
  802. hi = ldexp(hi, expon - 56);
  803. lo = z - hi;
  804. T sq = z * z; // LCOV_EXCL_LINE strangley not seen by lcov
  805. T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
  806. result *= exp(-sq) * exp(-err_sqr) / z;
  807. }
  808. else if(z < 2.25)
  809. {
  810. // Maximum Deviation Found: 1.418e-35
  811. // Expected Error Term: 1.418e-35
  812. // Maximum Relative Change in Control Points: 1.316e-04
  813. // Max Error found at long double precision = 1.998462e-35
  814. // LCOV_EXCL_START
  815. static const T Y = 0.50250148773193359375f;
  816. static const T P[] = {
  817. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0201233630504573402185161184151016606),
  818. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0331864357574860196516686996302305002),
  819. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0716562720864787193337475444413405461),
  820. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0545835322082103985114927569724880658),
  821. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0236692635189696678976549720784989593),
  822. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00656970902163248872837262539337601845),
  823. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00120282643299089441390490459256235021),
  824. BOOST_MATH_BIG_CONSTANT(T, 113, 0.000142123229065182650020762792081622986),
  825. BOOST_MATH_BIG_CONSTANT(T, 113, 0.991531438367015135346716277792989347e-5),
  826. BOOST_MATH_BIG_CONSTANT(T, 113, 0.312857043762117596999398067153076051e-6),
  827. };
  828. static const T Q[] = {
  829. BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
  830. BOOST_MATH_BIG_CONSTANT(T, 113, 2.13506082409097783827103424943508554),
  831. BOOST_MATH_BIG_CONSTANT(T, 113, 2.06399257267556230937723190496806215),
  832. BOOST_MATH_BIG_CONSTANT(T, 113, 1.18678481279932541314830499880691109),
  833. BOOST_MATH_BIG_CONSTANT(T, 113, 0.447733186643051752513538142316799562),
  834. BOOST_MATH_BIG_CONSTANT(T, 113, 0.11505680005657879437196953047542148),
  835. BOOST_MATH_BIG_CONSTANT(T, 113, 0.020163993632192726170219663831914034),
  836. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00232708971840141388847728782209730585),
  837. BOOST_MATH_BIG_CONSTANT(T, 113, 0.000160733201627963528519726484608224112),
  838. BOOST_MATH_BIG_CONSTANT(T, 113, 0.507158721790721802724402992033269266e-5),
  839. BOOST_MATH_BIG_CONSTANT(T, 113, 0.18647774409821470950544212696270639e-12),
  840. };
  841. // LCOV_EXCL_STOP
  842. result = Y + tools::evaluate_polynomial(P, T(z - 1.5f)) / tools::evaluate_polynomial(Q, T(z - 1.5f));
  843. T hi, lo; // LCOV_EXCL_LINE
  844. int expon;
  845. hi = floor(ldexp(frexp(z, &expon), 56));
  846. hi = ldexp(hi, expon - 56);
  847. lo = z - hi;
  848. T sq = z * z; // LCOV_EXCL_LINE strangely not seen by lcov.
  849. T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
  850. result *= exp(-sq) * exp(-err_sqr) / z;
  851. }
  852. else if (z < 3)
  853. {
  854. // Maximum Deviation Found: 3.575e-36
  855. // Expected Error Term: 3.575e-36
  856. // Maximum Relative Change in Control Points: 7.103e-05
  857. // Max Error found at long double precision = 5.794737e-36
  858. // LCOV_EXCL_START
  859. static const T Y = 0.52896785736083984375f;
  860. static const T P[] = {
  861. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00902152521745813634562524098263360074),
  862. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0145207142776691539346923710537580927),
  863. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0301681239582193983824211995978678571),
  864. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0215548540823305814379020678660434461),
  865. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00864683476267958365678294164340749949),
  866. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00219693096885585491739823283511049902),
  867. BOOST_MATH_BIG_CONSTANT(T, 113, 0.000364961639163319762492184502159894371),
  868. BOOST_MATH_BIG_CONSTANT(T, 113, 0.388174251026723752769264051548703059e-4),
  869. BOOST_MATH_BIG_CONSTANT(T, 113, 0.241918026931789436000532513553594321e-5),
  870. BOOST_MATH_BIG_CONSTANT(T, 113, 0.676586625472423508158937481943649258e-7),
  871. };
  872. static const T Q[] = {
  873. BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
  874. BOOST_MATH_BIG_CONSTANT(T, 113, 1.93669171363907292305550231764920001),
  875. BOOST_MATH_BIG_CONSTANT(T, 113, 1.69468476144051356810672506101377494),
  876. BOOST_MATH_BIG_CONSTANT(T, 113, 0.880023580986436640372794392579985511),
  877. BOOST_MATH_BIG_CONSTANT(T, 113, 0.299099106711315090710836273697708402),
  878. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0690593962363545715997445583603382337),
  879. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0108427016361318921960863149875360222),
  880. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00111747247208044534520499324234317695),
  881. BOOST_MATH_BIG_CONSTANT(T, 113, 0.686843205749767250666787987163701209e-4),
  882. BOOST_MATH_BIG_CONSTANT(T, 113, 0.192093541425429248675532015101904262e-5),
  883. };
  884. // LCOV_EXCL_STOP
  885. result = Y + tools::evaluate_polynomial(P, T(z - 2.25f)) / tools::evaluate_polynomial(Q, T(z - 2.25f));
  886. T hi, lo; // LCOV_EXCL_LINE
  887. int expon;
  888. hi = floor(ldexp(frexp(z, &expon), 56));
  889. hi = ldexp(hi, expon - 56);
  890. lo = z - hi;
  891. T sq = z * z; // LCOV_EXCL_LINE strangely not seen by lcov.
  892. T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
  893. result *= exp(-sq) * exp(-err_sqr) / z;
  894. }
  895. else if(z < 3.5)
  896. {
  897. // Maximum Deviation Found: 8.126e-37
  898. // Expected Error Term: -8.126e-37
  899. // Maximum Relative Change in Control Points: 1.363e-04
  900. // Max Error found at long double precision = 1.747062e-36
  901. // LCOV_EXCL_START
  902. static const T Y = 0.54037380218505859375f;
  903. static const T P[] = {
  904. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0033703486408887424921155540591370375),
  905. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0104948043110005245215286678898115811),
  906. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0148530118504000311502310457390417795),
  907. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00816693029245443090102738825536188916),
  908. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00249716579989140882491939681805594585),
  909. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0004655591010047353023978045800916647),
  910. BOOST_MATH_BIG_CONSTANT(T, 113, 0.531129557920045295895085236636025323e-4),
  911. BOOST_MATH_BIG_CONSTANT(T, 113, 0.343526765122727069515775194111741049e-5),
  912. BOOST_MATH_BIG_CONSTANT(T, 113, 0.971120407556888763695313774578711839e-7),
  913. };
  914. static const T Q[] = {
  915. BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
  916. BOOST_MATH_BIG_CONSTANT(T, 113, 1.59911256167540354915906501335919317),
  917. BOOST_MATH_BIG_CONSTANT(T, 113, 1.136006830764025173864831382946934),
  918. BOOST_MATH_BIG_CONSTANT(T, 113, 0.468565867990030871678574840738423023),
  919. BOOST_MATH_BIG_CONSTANT(T, 113, 0.122821824954470343413956476900662236),
  920. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0209670914950115943338996513330141633),
  921. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00227845718243186165620199012883547257),
  922. BOOST_MATH_BIG_CONSTANT(T, 113, 0.000144243326443913171313947613547085553),
  923. BOOST_MATH_BIG_CONSTANT(T, 113, 0.407763415954267700941230249989140046e-5),
  924. };
  925. // LCOV_EXCL_STOP
  926. result = Y + tools::evaluate_polynomial(P, T(z - 3.0f)) / tools::evaluate_polynomial(Q, T(z - 3.0f));
  927. T hi, lo; // LCOV_EXCL_LINE
  928. int expon;
  929. hi = floor(ldexp(frexp(z, &expon), 56));
  930. hi = ldexp(hi, expon - 56);
  931. lo = z - hi;
  932. T sq = z * z; // LCOV_EXCL_LINE strangely not seen by lcov.
  933. T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
  934. result *= exp(-sq) * exp(-err_sqr) / z;
  935. }
  936. else if(z < 5.5)
  937. {
  938. // Maximum Deviation Found: 5.804e-36
  939. // Expected Error Term: -5.803e-36
  940. // Maximum Relative Change in Control Points: 2.475e-05
  941. // Max Error found at long double precision = 1.349545e-35
  942. // LCOV_EXCL_START
  943. static const T Y = 0.55000019073486328125f;
  944. static const T P[] = {
  945. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00118142849742309772151454518093813615),
  946. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0072201822885703318172366893469382745),
  947. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0078782276276860110721875733778481505),
  948. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00418229166204362376187593976656261146),
  949. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00134198400587769200074194304298642705),
  950. BOOST_MATH_BIG_CONSTANT(T, 113, 0.000283210387078004063264777611497435572),
  951. BOOST_MATH_BIG_CONSTANT(T, 113, 0.405687064094911866569295610914844928e-4),
  952. BOOST_MATH_BIG_CONSTANT(T, 113, 0.39348283801568113807887364414008292e-5),
  953. BOOST_MATH_BIG_CONSTANT(T, 113, 0.248798540917787001526976889284624449e-6),
  954. BOOST_MATH_BIG_CONSTANT(T, 113, 0.929502490223452372919607105387474751e-8),
  955. BOOST_MATH_BIG_CONSTANT(T, 113, 0.156161469668275442569286723236274457e-9),
  956. };
  957. static const T Q[] = {
  958. BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
  959. BOOST_MATH_BIG_CONSTANT(T, 113, 1.52955245103668419479878456656709381),
  960. BOOST_MATH_BIG_CONSTANT(T, 113, 1.06263944820093830054635017117417064),
  961. BOOST_MATH_BIG_CONSTANT(T, 113, 0.441684612681607364321013134378316463),
  962. BOOST_MATH_BIG_CONSTANT(T, 113, 0.121665258426166960049773715928906382),
  963. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0232134512374747691424978642874321434),
  964. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00310778180686296328582860464875562636),
  965. BOOST_MATH_BIG_CONSTANT(T, 113, 0.000288361770756174705123674838640161693),
  966. BOOST_MATH_BIG_CONSTANT(T, 113, 0.177529187194133944622193191942300132e-4),
  967. BOOST_MATH_BIG_CONSTANT(T, 113, 0.655068544833064069223029299070876623e-6),
  968. BOOST_MATH_BIG_CONSTANT(T, 113, 0.11005507545746069573608988651927452e-7),
  969. };
  970. // LCOV_EXCL_STOP
  971. result = Y + tools::evaluate_polynomial(P, T(z - 4.5f)) / tools::evaluate_polynomial(Q, T(z - 4.5f));
  972. T hi, lo; // LCOV_EXCL_LINE
  973. int expon;
  974. hi = floor(ldexp(frexp(z, &expon), 56));
  975. hi = ldexp(hi, expon - 56);
  976. lo = z - hi;
  977. T sq = z * z; // LCOV_EXCL_LINE strangely not seen by lcov.
  978. T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
  979. result *= exp(-sq) * exp(-err_sqr) / z;
  980. }
  981. else if(z < 7.5)
  982. {
  983. // Maximum Deviation Found: 1.007e-36
  984. // Expected Error Term: 1.007e-36
  985. // Maximum Relative Change in Control Points: 1.027e-03
  986. // Max Error found at long double precision = 2.646420e-36
  987. // LCOV_EXCL_START
  988. static const T Y = 0.5574436187744140625f;
  989. static const T P[] = {
  990. BOOST_MATH_BIG_CONSTANT(T, 113, 0.000293236907400849056269309713064107674),
  991. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00225110719535060642692275221961480162),
  992. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00190984458121502831421717207849429799),
  993. BOOST_MATH_BIG_CONSTANT(T, 113, 0.000747757733460111743833929141001680706),
  994. BOOST_MATH_BIG_CONSTANT(T, 113, 0.000170663175280949889583158597373928096),
  995. BOOST_MATH_BIG_CONSTANT(T, 113, 0.246441188958013822253071608197514058e-4),
  996. BOOST_MATH_BIG_CONSTANT(T, 113, 0.229818000860544644974205957895688106e-5),
  997. BOOST_MATH_BIG_CONSTANT(T, 113, 0.134886977703388748488480980637704864e-6),
  998. BOOST_MATH_BIG_CONSTANT(T, 113, 0.454764611880548962757125070106650958e-8),
  999. BOOST_MATH_BIG_CONSTANT(T, 113, 0.673002744115866600294723141176820155e-10),
  1000. };
  1001. static const T Q[] = {
  1002. BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
  1003. BOOST_MATH_BIG_CONSTANT(T, 113, 1.12843690320861239631195353379313367),
  1004. BOOST_MATH_BIG_CONSTANT(T, 113, 0.569900657061622955362493442186537259),
  1005. BOOST_MATH_BIG_CONSTANT(T, 113, 0.169094404206844928112348730277514273),
  1006. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0324887449084220415058158657252147063),
  1007. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00419252877436825753042680842608219552),
  1008. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00036344133176118603523976748563178578),
  1009. BOOST_MATH_BIG_CONSTANT(T, 113, 0.204123895931375107397698245752850347e-4),
  1010. BOOST_MATH_BIG_CONSTANT(T, 113, 0.674128352521481412232785122943508729e-6),
  1011. BOOST_MATH_BIG_CONSTANT(T, 113, 0.997637501418963696542159244436245077e-8),
  1012. };
  1013. // LCOV_EXCL_STOP
  1014. result = Y + tools::evaluate_polynomial(P, T(z - 6.5f)) / tools::evaluate_polynomial(Q, T(z - 6.5f));
  1015. T hi, lo;
  1016. int expon;
  1017. hi = floor(ldexp(frexp(z, &expon), 56));
  1018. hi = ldexp(hi, expon - 56);
  1019. lo = z - hi;
  1020. T sq = z * z;
  1021. T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
  1022. result *= exp(-sq) * exp(-err_sqr) / z;
  1023. }
  1024. else if(z < 11.5)
  1025. {
  1026. // Maximum Deviation Found: 8.380e-36
  1027. // Expected Error Term: 8.380e-36
  1028. // Maximum Relative Change in Control Points: 2.632e-06
  1029. // Max Error found at long double precision = 9.849522e-36
  1030. // LCOV_EXCL_START
  1031. static const T Y = 0.56083202362060546875f;
  1032. static const T P[] = {
  1033. BOOST_MATH_BIG_CONSTANT(T, 113, 0.000282420728751494363613829834891390121),
  1034. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00175387065018002823433704079355125161),
  1035. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0021344978564889819420775336322920375),
  1036. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00124151356560137532655039683963075661),
  1037. BOOST_MATH_BIG_CONSTANT(T, 113, 0.000423600733566948018555157026862139644),
  1038. BOOST_MATH_BIG_CONSTANT(T, 113, 0.914030340865175237133613697319509698e-4),
  1039. BOOST_MATH_BIG_CONSTANT(T, 113, 0.126999927156823363353809747017945494e-4),
  1040. BOOST_MATH_BIG_CONSTANT(T, 113, 0.110610959842869849776179749369376402e-5),
  1041. BOOST_MATH_BIG_CONSTANT(T, 113, 0.55075079477173482096725348704634529e-7),
  1042. BOOST_MATH_BIG_CONSTANT(T, 113, 0.119735694018906705225870691331543806e-8),
  1043. };
  1044. static const T Q[] = {
  1045. BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
  1046. BOOST_MATH_BIG_CONSTANT(T, 113, 1.69889613396167354566098060039549882),
  1047. BOOST_MATH_BIG_CONSTANT(T, 113, 1.28824647372749624464956031163282674),
  1048. BOOST_MATH_BIG_CONSTANT(T, 113, 0.572297795434934493541628008224078717),
  1049. BOOST_MATH_BIG_CONSTANT(T, 113, 0.164157697425571712377043857240773164),
  1050. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0315311145224594430281219516531649562),
  1051. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00405588922155632380812945849777127458),
  1052. BOOST_MATH_BIG_CONSTANT(T, 113, 0.000336929033691445666232029762868642417),
  1053. BOOST_MATH_BIG_CONSTANT(T, 113, 0.164033049810404773469413526427932109e-4),
  1054. BOOST_MATH_BIG_CONSTANT(T, 113, 0.356615210500531410114914617294694857e-6),
  1055. };
  1056. // LCOV_EXCL_STOP
  1057. result = Y + tools::evaluate_polynomial(P, T(z / 2 - 4.75f)) / tools::evaluate_polynomial(Q, T(z / 2 - 4.75f));
  1058. T hi, lo; // LCOV_EXCL_LINE
  1059. int expon;
  1060. hi = floor(ldexp(frexp(z, &expon), 56));
  1061. hi = ldexp(hi, expon - 56);
  1062. lo = z - hi;
  1063. T sq = z * z; // LCOV_EXCL_LINE strangely not seen by lcov.
  1064. T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
  1065. result *= exp(-sq) * exp(-err_sqr) / z;
  1066. }
  1067. else
  1068. {
  1069. // Maximum Deviation Found: 1.132e-35
  1070. // Expected Error Term: -1.132e-35
  1071. // Maximum Relative Change in Control Points: 4.674e-04
  1072. // Max Error found at long double precision = 1.162590e-35
  1073. // LCOV_EXCL_START
  1074. static const T Y = 0.5632686614990234375f;
  1075. static const T P[] = {
  1076. BOOST_MATH_BIG_CONSTANT(T, 113, 0.000920922048732849448079451574171836943),
  1077. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00321439044532288750501700028748922439),
  1078. BOOST_MATH_BIG_CONSTANT(T, 113, -0.250455263029390118657884864261823431),
  1079. BOOST_MATH_BIG_CONSTANT(T, 113, -0.906807635364090342031792404764598142),
  1080. BOOST_MATH_BIG_CONSTANT(T, 113, -8.92233572835991735876688745989985565),
  1081. BOOST_MATH_BIG_CONSTANT(T, 113, -21.7797433494422564811782116907878495),
  1082. BOOST_MATH_BIG_CONSTANT(T, 113, -91.1451915251976354349734589601171659),
  1083. BOOST_MATH_BIG_CONSTANT(T, 113, -144.1279109655993927069052125017673),
  1084. BOOST_MATH_BIG_CONSTANT(T, 113, -313.845076581796338665519022313775589),
  1085. BOOST_MATH_BIG_CONSTANT(T, 113, -273.11378811923343424081101235736475),
  1086. BOOST_MATH_BIG_CONSTANT(T, 113, -271.651566205951067025696102600443452),
  1087. BOOST_MATH_BIG_CONSTANT(T, 113, -60.0530577077238079968843307523245547),
  1088. };
  1089. static const T Q[] = {
  1090. BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
  1091. BOOST_MATH_BIG_CONSTANT(T, 113, 3.49040448075464744191022350947892036),
  1092. BOOST_MATH_BIG_CONSTANT(T, 113, 34.3563592467165971295915749548313227),
  1093. BOOST_MATH_BIG_CONSTANT(T, 113, 84.4993232033879023178285731843850461),
  1094. BOOST_MATH_BIG_CONSTANT(T, 113, 376.005865281206894120659401340373818),
  1095. BOOST_MATH_BIG_CONSTANT(T, 113, 629.95369438888946233003926191755125),
  1096. BOOST_MATH_BIG_CONSTANT(T, 113, 1568.35771983533158591604513304269098),
  1097. BOOST_MATH_BIG_CONSTANT(T, 113, 1646.02452040831961063640827116581021),
  1098. BOOST_MATH_BIG_CONSTANT(T, 113, 2299.96860633240298708910425594484895),
  1099. BOOST_MATH_BIG_CONSTANT(T, 113, 1222.73204392037452750381340219906374),
  1100. BOOST_MATH_BIG_CONSTANT(T, 113, 799.359797306084372350264298361110448),
  1101. BOOST_MATH_BIG_CONSTANT(T, 113, 72.7415265778588087243442792401576737),
  1102. };
  1103. // LCOV_EXCL_STOP
  1104. result = Y + tools::evaluate_polynomial(P, T(1 / z)) / tools::evaluate_polynomial(Q, T(1 / z));
  1105. T hi, lo;
  1106. int expon;
  1107. hi = floor(ldexp(frexp(z, &expon), 56));
  1108. hi = ldexp(hi, expon - 56);
  1109. lo = z - hi;
  1110. T sq = z * z;
  1111. T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
  1112. result *= exp(-sq) * exp(-err_sqr) / z;
  1113. }
  1114. }
  1115. else
  1116. {
  1117. //
  1118. // Any value of z larger than 110 will underflow to zero:
  1119. //
  1120. result = 0;
  1121. invert = !invert;
  1122. }
  1123. if(invert)
  1124. {
  1125. result = 1 - result;
  1126. }
  1127. return result;
  1128. } // template <class T, class Lanczos>T erf_imp(T z, bool invert, const Lanczos& l, const std::integral_constant<int, 113>& t)
  1129. } // namespace detail
  1130. template <class T, class Policy>
  1131. inline typename tools::promote_args<T>::type erf(T z, const Policy& /* pol */)
  1132. {
  1133. typedef typename tools::promote_args<T>::type result_type;
  1134. typedef typename policies::evaluation<result_type, Policy>::type value_type;
  1135. typedef typename policies::precision<result_type, Policy>::type precision_type;
  1136. typedef typename policies::normalise<
  1137. Policy,
  1138. policies::promote_float<false>,
  1139. policies::promote_double<false>,
  1140. policies::discrete_quantile<>,
  1141. policies::assert_undefined<> >::type forwarding_policy;
  1142. BOOST_MATH_INSTRUMENT_CODE("result_type = " << typeid(result_type).name());
  1143. BOOST_MATH_INSTRUMENT_CODE("value_type = " << typeid(value_type).name());
  1144. BOOST_MATH_INSTRUMENT_CODE("precision_type = " << typeid(precision_type).name());
  1145. typedef std::integral_constant<int,
  1146. precision_type::value <= 0 ? 0 :
  1147. precision_type::value <= 53 ? 53 :
  1148. precision_type::value <= 64 ? 64 :
  1149. precision_type::value <= 113 ? 113 : 0
  1150. > tag_type;
  1151. BOOST_MATH_INSTRUMENT_CODE("tag_type = " << typeid(tag_type).name());
  1152. return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::erf_imp(
  1153. static_cast<value_type>(z),
  1154. false,
  1155. forwarding_policy(),
  1156. tag_type()), "boost::math::erf<%1%>(%1%, %1%)");
  1157. }
  1158. template <class T, class Policy>
  1159. inline typename tools::promote_args<T>::type erfc(T z, const Policy& /* pol */)
  1160. {
  1161. typedef typename tools::promote_args<T>::type result_type;
  1162. typedef typename policies::evaluation<result_type, Policy>::type value_type;
  1163. typedef typename policies::precision<result_type, Policy>::type precision_type;
  1164. typedef typename policies::normalise<
  1165. Policy,
  1166. policies::promote_float<false>,
  1167. policies::promote_double<false>,
  1168. policies::discrete_quantile<>,
  1169. policies::assert_undefined<> >::type forwarding_policy;
  1170. BOOST_MATH_INSTRUMENT_CODE("result_type = " << typeid(result_type).name());
  1171. BOOST_MATH_INSTRUMENT_CODE("value_type = " << typeid(value_type).name());
  1172. BOOST_MATH_INSTRUMENT_CODE("precision_type = " << typeid(precision_type).name());
  1173. typedef std::integral_constant<int,
  1174. precision_type::value <= 0 ? 0 :
  1175. precision_type::value <= 53 ? 53 :
  1176. precision_type::value <= 64 ? 64 :
  1177. precision_type::value <= 113 ? 113 : 0
  1178. > tag_type;
  1179. BOOST_MATH_INSTRUMENT_CODE("tag_type = " << typeid(tag_type).name());
  1180. return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::erf_imp(
  1181. static_cast<value_type>(z),
  1182. true,
  1183. forwarding_policy(),
  1184. tag_type()), "boost::math::erfc<%1%>(%1%, %1%)");
  1185. }
  1186. template <class T>
  1187. inline typename tools::promote_args<T>::type erf(T z)
  1188. {
  1189. return boost::math::erf(z, policies::policy<>());
  1190. }
  1191. template <class T>
  1192. inline typename tools::promote_args<T>::type erfc(T z)
  1193. {
  1194. return boost::math::erfc(z, policies::policy<>());
  1195. }
  1196. } // namespace math
  1197. } // namespace boost
  1198. #include <boost/math/special_functions/detail/erf_inv.hpp>
  1199. #endif // BOOST_MATH_SPECIAL_ERF_HPP