ellint_rd.hpp 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202
  1. // Copyright (c) 2006 Xiaogang Zhang, 2015 John Maddock.
  2. // Use, modification and distribution are subject to the
  3. // Boost Software License, Version 1.0. (See accompanying file
  4. // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
  5. //
  6. // History:
  7. // XZ wrote the original of this file as part of the Google
  8. // Summer of Code 2006. JM modified it slightly to fit into the
  9. // Boost.Math conceptual framework better.
  10. // Updated 2015 to use Carlson's latest methods.
  11. #ifndef BOOST_MATH_ELLINT_RD_HPP
  12. #define BOOST_MATH_ELLINT_RD_HPP
  13. #ifdef _MSC_VER
  14. #pragma once
  15. #endif
  16. #include <boost/math/special_functions/math_fwd.hpp>
  17. #include <boost/math/special_functions/ellint_rc.hpp>
  18. #include <boost/math/special_functions/pow.hpp>
  19. #include <boost/math/tools/config.hpp>
  20. #include <boost/math/policies/error_handling.hpp>
  21. // Carlson's elliptic integral of the second kind
  22. // R_D(x, y, z) = R_J(x, y, z, z) = 1.5 * \int_{0}^{\infty} [(t+x)(t+y)]^{-1/2} (t+z)^{-3/2} dt
  23. // Carlson, Numerische Mathematik, vol 33, 1 (1979)
  24. namespace boost { namespace math { namespace detail{
  25. template <typename T, typename Policy>
  26. T ellint_rd_imp(T x, T y, T z, const Policy& pol)
  27. {
  28. BOOST_MATH_STD_USING
  29. using std::swap;
  30. static const char* function = "boost::math::ellint_rd<%1%>(%1%,%1%,%1%)";
  31. if(x < 0)
  32. {
  33. return policies::raise_domain_error<T>(function, "Argument x must be >= 0, but got %1%", x, pol);
  34. }
  35. if(y < 0)
  36. {
  37. return policies::raise_domain_error<T>(function, "Argument y must be >= 0, but got %1%", y, pol);
  38. }
  39. if(z <= 0)
  40. {
  41. return policies::raise_domain_error<T>(function, "Argument z must be > 0, but got %1%", z, pol);
  42. }
  43. if(x + y == 0)
  44. {
  45. return policies::raise_domain_error<T>(function, "At most one argument can be zero, but got, x + y = %1%", x + y, pol);
  46. }
  47. //
  48. // Special cases from http://dlmf.nist.gov/19.20#iv
  49. //
  50. using std::swap;
  51. if(x == z)
  52. swap(x, y);
  53. if(y == z)
  54. {
  55. if(x == y)
  56. {
  57. return 1 / (x * sqrt(x));
  58. }
  59. else if(x == 0)
  60. {
  61. return 3 * constants::pi<T>() / (4 * y * sqrt(y));
  62. }
  63. else
  64. {
  65. if((std::max)(x, y) / (std::min)(x, y) > T(1.3))
  66. return 3 * (ellint_rc_imp(x, y, pol) - sqrt(x) / y) / (2 * (y - x));
  67. // Otherwise fall through to avoid cancellation in the above (RC(x,y) -> 1/x^0.5 as x -> y)
  68. }
  69. }
  70. if(x == y)
  71. {
  72. if((std::max)(x, z) / (std::min)(x, z) > T(1.3))
  73. return 3 * (ellint_rc_imp(z, x, pol) - 1 / sqrt(z)) / (z - x);
  74. // Otherwise fall through to avoid cancellation in the above (RC(x,y) -> 1/x^0.5 as x -> y)
  75. }
  76. if(y == 0)
  77. swap(x, y);
  78. if(x == 0)
  79. {
  80. //
  81. // Special handling for common case, from
  82. // Numerical Computation of Real or Complex Elliptic Integrals, eq.47
  83. //
  84. T xn = sqrt(y);
  85. T yn = sqrt(z);
  86. T x0 = xn;
  87. T y0 = yn;
  88. T sum = 0;
  89. T sum_pow = 0.25f;
  90. while(fabs(xn - yn) >= T(2.7) * tools::root_epsilon<T>() * fabs(xn))
  91. {
  92. T t = sqrt(xn * yn);
  93. xn = (xn + yn) / 2;
  94. yn = t;
  95. sum_pow *= 2;
  96. sum += sum_pow * boost::math::pow<2>(xn - yn);
  97. }
  98. T RF = constants::pi<T>() / (xn + yn);
  99. //
  100. // This following calculation suffers from serious cancellation when y ~ z
  101. // unless we combine terms. We have:
  102. //
  103. // ( ((x0 + y0)/2)^2 - z ) / (z(y-z))
  104. //
  105. // Substituting y = x0^2 and z = y0^2 and simplifying we get the following:
  106. //
  107. T pt = (x0 + 3 * y0) / (4 * z * (x0 + y0));
  108. //
  109. // Since we've moved the denominator from eq.47 inside the expression, we
  110. // need to also scale "sum" by the same value:
  111. //
  112. pt -= sum / (z * (y - z));
  113. return pt * RF * 3;
  114. }
  115. T xn = x;
  116. T yn = y;
  117. T zn = z;
  118. T An = (x + y + 3 * z) / 5;
  119. T A0 = An;
  120. // This has an extra 1.2 fudge factor which is really only needed when x, y and z are close in magnitude:
  121. T Q = pow(tools::epsilon<T>() / 4, -T(1) / 8) * (std::max)((std::max)(An - x, An - y), An - z) * 1.2f;
  122. BOOST_MATH_INSTRUMENT_VARIABLE(Q);
  123. T lambda, rx, ry, rz;
  124. unsigned k = 0;
  125. T fn = 1;
  126. T RD_sum = 0;
  127. for(; k < policies::get_max_series_iterations<Policy>(); ++k)
  128. {
  129. rx = sqrt(xn);
  130. ry = sqrt(yn);
  131. rz = sqrt(zn);
  132. lambda = rx * ry + rx * rz + ry * rz;
  133. RD_sum += fn / (rz * (zn + lambda));
  134. An = (An + lambda) / 4;
  135. xn = (xn + lambda) / 4;
  136. yn = (yn + lambda) / 4;
  137. zn = (zn + lambda) / 4;
  138. fn /= 4;
  139. Q /= 4;
  140. BOOST_MATH_INSTRUMENT_VARIABLE(k);
  141. BOOST_MATH_INSTRUMENT_VARIABLE(RD_sum);
  142. BOOST_MATH_INSTRUMENT_VARIABLE(Q);
  143. if(Q < An)
  144. break;
  145. }
  146. policies::check_series_iterations<T, Policy>(function, k, pol);
  147. T X = fn * (A0 - x) / An;
  148. T Y = fn * (A0 - y) / An;
  149. T Z = -(X + Y) / 3;
  150. T E2 = X * Y - 6 * Z * Z;
  151. T E3 = (3 * X * Y - 8 * Z * Z) * Z;
  152. T E4 = 3 * (X * Y - Z * Z) * Z * Z;
  153. T E5 = X * Y * Z * Z * Z;
  154. T result = fn * pow(An, T(-3) / 2) *
  155. (1 - 3 * E2 / 14 + E3 / 6 + 9 * E2 * E2 / 88 - 3 * E4 / 22 - 9 * E2 * E3 / 52 + 3 * E5 / 26 - E2 * E2 * E2 / 16
  156. + 3 * E3 * E3 / 40 + 3 * E2 * E4 / 20 + 45 * E2 * E2 * E3 / 272 - 9 * (E3 * E4 + E2 * E5) / 68);
  157. BOOST_MATH_INSTRUMENT_VARIABLE(result);
  158. result += 3 * RD_sum;
  159. return result;
  160. }
  161. } // namespace detail
  162. template <class T1, class T2, class T3, class Policy>
  163. inline typename tools::promote_args<T1, T2, T3>::type
  164. ellint_rd(T1 x, T2 y, T3 z, const Policy& pol)
  165. {
  166. typedef typename tools::promote_args<T1, T2, T3>::type result_type;
  167. typedef typename policies::evaluation<result_type, Policy>::type value_type;
  168. return policies::checked_narrowing_cast<result_type, Policy>(
  169. detail::ellint_rd_imp(
  170. static_cast<value_type>(x),
  171. static_cast<value_type>(y),
  172. static_cast<value_type>(z), pol), "boost::math::ellint_rd<%1%>(%1%,%1%,%1%)");
  173. }
  174. template <class T1, class T2, class T3>
  175. inline typename tools::promote_args<T1, T2, T3>::type
  176. ellint_rd(T1 x, T2 y, T3 z)
  177. {
  178. return ellint_rd(x, y, z, policies::policy<>());
  179. }
  180. }} // namespaces
  181. #endif // BOOST_MATH_ELLINT_RD_HPP