lanczos_smoothing.hpp 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591
  1. // (C) Copyright Nick Thompson 2019.
  2. // Use, modification and distribution are subject to the
  3. // Boost Software License, Version 1.0. (See accompanying file
  4. // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
  5. #ifndef BOOST_MATH_DIFFERENTIATION_LANCZOS_SMOOTHING_HPP
  6. #define BOOST_MATH_DIFFERENTIATION_LANCZOS_SMOOTHING_HPP
  7. #include <cmath> // for std::abs
  8. #include <cstddef>
  9. #include <limits> // to nan initialize
  10. #include <vector>
  11. #include <string>
  12. #include <cstdint>
  13. #include <stdexcept>
  14. #include <type_traits>
  15. #include <boost/math/tools/assert.hpp>
  16. #include <boost/math/tools/is_standalone.hpp>
  17. #ifndef BOOST_MATH_STANDALONE
  18. #include <boost/config.hpp>
  19. #ifdef BOOST_MATH_NO_CXX17_IF_CONSTEXPR
  20. #error "The header <boost/math/norms.hpp> can only be used in C++17 and later."
  21. #endif
  22. #endif
  23. namespace boost::math::differentiation {
  24. namespace detail {
  25. template <typename Real>
  26. class discrete_legendre {
  27. public:
  28. explicit discrete_legendre(std::size_t n, Real x) : m_n{n}, m_r{2}, m_x{x},
  29. m_qrm2{1}, m_qrm1{x},
  30. m_qrm2p{0}, m_qrm1p{1},
  31. m_qrm2pp{0}, m_qrm1pp{0}
  32. {
  33. using std::abs;
  34. BOOST_MATH_ASSERT_MSG(abs(m_x) <= 1, "Three term recurrence is stable only for |x| <=1.");
  35. // The integer n indexes a family of discrete Legendre polynomials indexed by k <= 2*n
  36. }
  37. Real norm_sq(int r) const
  38. {
  39. Real prod = Real(2) / Real(2 * r + 1);
  40. for (int k = -r; k <= r; ++k) {
  41. prod *= Real(2 * m_n + 1 + k) / Real(2 * m_n);
  42. }
  43. return prod;
  44. }
  45. Real next()
  46. {
  47. Real N = 2 * m_n + 1;
  48. Real num = (m_r - 1) * (N * N - (m_r - 1) * (m_r - 1)) * m_qrm2;
  49. Real tmp = (2 * m_r - 1) * m_x * m_qrm1 - num / Real(4 * m_n * m_n);
  50. m_qrm2 = m_qrm1;
  51. m_qrm1 = tmp / m_r;
  52. ++m_r;
  53. return m_qrm1;
  54. }
  55. Real next_prime()
  56. {
  57. Real N = 2 * m_n + 1;
  58. Real s = (m_r - 1) * (N * N - (m_r - 1) * (m_r - 1)) / Real(4 * m_n * m_n);
  59. Real tmp1 = ((2 * m_r - 1) * m_x * m_qrm1 - s * m_qrm2) / m_r;
  60. Real tmp2 = ((2 * m_r - 1) * (m_qrm1 + m_x * m_qrm1p) - s * m_qrm2p) / m_r;
  61. m_qrm2 = m_qrm1;
  62. m_qrm1 = tmp1;
  63. m_qrm2p = m_qrm1p;
  64. m_qrm1p = tmp2;
  65. ++m_r;
  66. return m_qrm1p;
  67. }
  68. Real next_dbl_prime()
  69. {
  70. Real N = 2*m_n + 1;
  71. Real trm1 = 2*m_r - 1;
  72. Real s = (m_r - 1) * (N * N - (m_r - 1) * (m_r - 1)) / Real(4 * m_n * m_n);
  73. Real rqrpp = 2*trm1*m_qrm1p + trm1*m_x*m_qrm1pp - s*m_qrm2pp;
  74. Real tmp1 = ((2 * m_r - 1) * m_x * m_qrm1 - s * m_qrm2) / m_r;
  75. Real tmp2 = ((2 * m_r - 1) * (m_qrm1 + m_x * m_qrm1p) - s * m_qrm2p) / m_r;
  76. m_qrm2 = m_qrm1;
  77. m_qrm1 = tmp1;
  78. m_qrm2p = m_qrm1p;
  79. m_qrm1p = tmp2;
  80. m_qrm2pp = m_qrm1pp;
  81. m_qrm1pp = rqrpp/m_r;
  82. ++m_r;
  83. return m_qrm1pp;
  84. }
  85. Real operator()(Real x, std::size_t k)
  86. {
  87. BOOST_MATH_ASSERT_MSG(k <= 2 * m_n, "r <= 2n is required.");
  88. if (k == 0)
  89. {
  90. return 1;
  91. }
  92. if (k == 1)
  93. {
  94. return x;
  95. }
  96. Real qrm2 = 1;
  97. Real qrm1 = x;
  98. Real N = 2 * m_n + 1;
  99. for (std::size_t r = 2; r <= k; ++r) {
  100. Real num = (r - 1) * (N * N - (r - 1) * (r - 1)) * qrm2;
  101. Real tmp = (2 * r - 1) * x * qrm1 - num / Real(4 * m_n * m_n);
  102. qrm2 = qrm1;
  103. qrm1 = tmp / r;
  104. }
  105. return qrm1;
  106. }
  107. Real prime(Real x, std::size_t k) {
  108. BOOST_MATH_ASSERT_MSG(k <= 2 * m_n, "r <= 2n is required.");
  109. if (k == 0) {
  110. return 0;
  111. }
  112. if (k == 1) {
  113. return 1;
  114. }
  115. Real qrm2 = 1;
  116. Real qrm1 = x;
  117. Real qrm2p = 0;
  118. Real qrm1p = 1;
  119. Real N = 2 * m_n + 1;
  120. for (std::size_t r = 2; r <= k; ++r) {
  121. Real s =
  122. (r - 1) * (N * N - (r - 1) * (r - 1)) / Real(4 * m_n * m_n);
  123. Real tmp1 = ((2 * r - 1) * x * qrm1 - s * qrm2) / r;
  124. Real tmp2 = ((2 * r - 1) * (qrm1 + x * qrm1p) - s * qrm2p) / r;
  125. qrm2 = qrm1;
  126. qrm1 = tmp1;
  127. qrm2p = qrm1p;
  128. qrm1p = tmp2;
  129. }
  130. return qrm1p;
  131. }
  132. private:
  133. std::size_t m_n;
  134. std::size_t m_r;
  135. Real m_x;
  136. Real m_qrm2;
  137. Real m_qrm1;
  138. Real m_qrm2p;
  139. Real m_qrm1p;
  140. Real m_qrm2pp;
  141. Real m_qrm1pp;
  142. };
  143. template <class Real>
  144. std::vector<Real> interior_velocity_filter(std::size_t n, std::size_t p) {
  145. auto dlp = discrete_legendre<Real>(n, 0);
  146. std::vector<Real> coeffs(p+1);
  147. coeffs[1] = 1/dlp.norm_sq(1);
  148. for (std::size_t l = 3; l < p + 1; l += 2)
  149. {
  150. dlp.next_prime();
  151. coeffs[l] = dlp.next_prime()/ dlp.norm_sq(l);
  152. }
  153. // We could make the filter length n, as f[0] = 0,
  154. // but that'd make the indexing awkward when applying the filter.
  155. std::vector<Real> f(n + 1);
  156. // This value should never be read, but this is the correct value *if it is read*.
  157. // Hmm, should it be a nan then? I'm not gonna agonize.
  158. f[0] = 0;
  159. for (std::size_t j = 1; j < f.size(); ++j)
  160. {
  161. Real arg = Real(j) / Real(n);
  162. dlp = discrete_legendre<Real>(n, arg);
  163. f[j] = coeffs[1]*arg;
  164. for (std::size_t l = 3; l <= p; l += 2)
  165. {
  166. dlp.next();
  167. f[j] += coeffs[l]*dlp.next();
  168. }
  169. f[j] /= (n * n);
  170. }
  171. return f;
  172. }
  173. template <class Real>
  174. std::vector<Real> boundary_velocity_filter(std::size_t n, std::size_t p, int64_t s)
  175. {
  176. std::vector<Real> coeffs(p+1, std::numeric_limits<Real>::quiet_NaN());
  177. Real sn = Real(s) / Real(n);
  178. auto dlp = discrete_legendre<Real>(n, sn);
  179. coeffs[0] = 0;
  180. coeffs[1] = 1/dlp.norm_sq(1);
  181. for (std::size_t l = 2; l < p + 1; ++l)
  182. {
  183. // Calculation of the norms is common to all filters,
  184. // so it seems like an obvious optimization target.
  185. // I tried this: The spent in computing the norms time is not negligible,
  186. // but still a small fraction of the total compute time.
  187. // Hence I'm not refactoring out these norm calculations.
  188. coeffs[l] = dlp.next_prime()/ dlp.norm_sq(l);
  189. }
  190. std::vector<Real> f(2*n + 1);
  191. for (std::size_t k = 0; k < f.size(); ++k)
  192. {
  193. Real j = Real(k) - Real(n);
  194. Real arg = j/Real(n);
  195. dlp = discrete_legendre<Real>(n, arg);
  196. f[k] = coeffs[1]*arg;
  197. for (std::size_t l = 2; l <= p; ++l)
  198. {
  199. f[k] += coeffs[l]*dlp.next();
  200. }
  201. f[k] /= (n * n);
  202. }
  203. return f;
  204. }
  205. template <class Real>
  206. std::vector<Real> acceleration_filter(std::size_t n, std::size_t p, int64_t s)
  207. {
  208. BOOST_MATH_ASSERT_MSG(p <= 2*n, "Approximation order must be <= 2*n");
  209. BOOST_MATH_ASSERT_MSG(p > 2, "Approximation order must be > 2");
  210. std::vector<Real> coeffs(p+1, std::numeric_limits<Real>::quiet_NaN());
  211. Real sn = Real(s) / Real(n);
  212. auto dlp = discrete_legendre<Real>(n, sn);
  213. coeffs[0] = 0;
  214. coeffs[1] = 0;
  215. for (std::size_t l = 2; l < p + 1; ++l)
  216. {
  217. coeffs[l] = dlp.next_dbl_prime()/ dlp.norm_sq(l);
  218. }
  219. std::vector<Real> f(2*n + 1, 0);
  220. for (std::size_t k = 0; k < f.size(); ++k)
  221. {
  222. Real j = Real(k) - Real(n);
  223. Real arg = j/Real(n);
  224. dlp = discrete_legendre<Real>(n, arg);
  225. for (std::size_t l = 2; l <= p; ++l)
  226. {
  227. f[k] += coeffs[l]*dlp.next();
  228. }
  229. f[k] /= (n * n * n);
  230. }
  231. return f;
  232. }
  233. } // namespace detail
  234. template <typename Real, std::size_t order = 1>
  235. class discrete_lanczos_derivative {
  236. public:
  237. discrete_lanczos_derivative(Real const & spacing,
  238. std::size_t n = 18,
  239. std::size_t approximation_order = 3)
  240. : m_dt{spacing}
  241. {
  242. static_assert(!std::is_integral_v<Real>,
  243. "Spacing must be a floating point type.");
  244. BOOST_MATH_ASSERT_MSG(spacing > 0,
  245. "Spacing between samples must be > 0.");
  246. if constexpr (order == 1)
  247. {
  248. BOOST_MATH_ASSERT_MSG(approximation_order <= 2 * n,
  249. "The approximation order must be <= 2n");
  250. BOOST_MATH_ASSERT_MSG(approximation_order >= 2,
  251. "The approximation order must be >= 2");
  252. if constexpr (std::is_same_v<Real, float> || std::is_same_v<Real, double>)
  253. {
  254. auto interior = detail::interior_velocity_filter<long double>(n, approximation_order);
  255. m_f.resize(interior.size());
  256. for (std::size_t j = 0; j < interior.size(); ++j)
  257. {
  258. m_f[j] = static_cast<Real>(interior[j])/m_dt;
  259. }
  260. }
  261. else
  262. {
  263. m_f = detail::interior_velocity_filter<Real>(n, approximation_order);
  264. for (auto & x : m_f)
  265. {
  266. x /= m_dt;
  267. }
  268. }
  269. m_boundary_filters.resize(n);
  270. // This for loop is a natural candidate for parallelization.
  271. // But does it matter? Probably not.
  272. for (std::size_t i = 0; i < n; ++i)
  273. {
  274. if constexpr (std::is_same_v<Real, float> || std::is_same_v<Real, double>)
  275. {
  276. int64_t s = static_cast<int64_t>(i) - static_cast<int64_t>(n);
  277. auto bf = detail::boundary_velocity_filter<long double>(n, approximation_order, s);
  278. m_boundary_filters[i].resize(bf.size());
  279. for (std::size_t j = 0; j < bf.size(); ++j)
  280. {
  281. m_boundary_filters[i][j] = static_cast<Real>(bf[j])/m_dt;
  282. }
  283. }
  284. else
  285. {
  286. int64_t s = static_cast<int64_t>(i) - static_cast<int64_t>(n);
  287. m_boundary_filters[i] = detail::boundary_velocity_filter<Real>(n, approximation_order, s);
  288. for (auto & bf : m_boundary_filters[i])
  289. {
  290. bf /= m_dt;
  291. }
  292. }
  293. }
  294. }
  295. else if constexpr (order == 2)
  296. {
  297. // High precision isn't warranted for small p; only for large p.
  298. // (The computation appears stable for large n.)
  299. // But given that the filters are reusable for many vectors,
  300. // it's better to do a high precision computation and then cast back,
  301. // since the resulting cost is a factor of 2, and the cost of the filters not working is hours of debugging.
  302. if constexpr (std::is_same_v<Real, double> || std::is_same_v<Real, float>)
  303. {
  304. auto f = detail::acceleration_filter<long double>(n, approximation_order, 0);
  305. m_f.resize(n+1);
  306. for (std::size_t i = 0; i < m_f.size(); ++i)
  307. {
  308. m_f[i] = static_cast<Real>(f[i+n])/(m_dt*m_dt);
  309. }
  310. m_boundary_filters.resize(n);
  311. for (std::size_t i = 0; i < n; ++i)
  312. {
  313. int64_t s = static_cast<int64_t>(i) - static_cast<int64_t>(n);
  314. auto bf = detail::acceleration_filter<long double>(n, approximation_order, s);
  315. m_boundary_filters[i].resize(bf.size());
  316. for (std::size_t j = 0; j < bf.size(); ++j)
  317. {
  318. m_boundary_filters[i][j] = static_cast<Real>(bf[j])/(m_dt*m_dt);
  319. }
  320. }
  321. }
  322. else
  323. {
  324. // Given that the purpose is denoising, for higher precision calculations,
  325. // the default precision should be fine.
  326. auto f = detail::acceleration_filter<Real>(n, approximation_order, 0);
  327. m_f.resize(n+1);
  328. for (std::size_t i = 0; i < m_f.size(); ++i)
  329. {
  330. m_f[i] = f[i+n]/(m_dt*m_dt);
  331. }
  332. m_boundary_filters.resize(n);
  333. for (std::size_t i = 0; i < n; ++i)
  334. {
  335. int64_t s = static_cast<int64_t>(i) - static_cast<int64_t>(n);
  336. m_boundary_filters[i] = detail::acceleration_filter<Real>(n, approximation_order, s);
  337. for (auto & bf : m_boundary_filters[i])
  338. {
  339. bf /= (m_dt*m_dt);
  340. }
  341. }
  342. }
  343. }
  344. else
  345. {
  346. BOOST_MATH_ASSERT_MSG(false, "Derivatives of order 3 and higher are not implemented.");
  347. }
  348. }
  349. Real get_spacing() const
  350. {
  351. return m_dt;
  352. }
  353. template<class RandomAccessContainer>
  354. Real operator()(RandomAccessContainer const & v, std::size_t i) const
  355. {
  356. static_assert(std::is_same_v<typename RandomAccessContainer::value_type, Real>,
  357. "The type of the values in the vector provided does not match the type in the filters.");
  358. BOOST_MATH_ASSERT_MSG(std::size(v) >= m_boundary_filters[0].size(),
  359. "Vector must be at least as long as the filter length");
  360. if constexpr (order==1)
  361. {
  362. if (i >= m_f.size() - 1 && i <= std::size(v) - m_f.size())
  363. {
  364. // The filter has length >= 1:
  365. Real dvdt = m_f[1] * (v[i + 1] - v[i - 1]);
  366. for (std::size_t j = 2; j < m_f.size(); ++j)
  367. {
  368. dvdt += m_f[j] * (v[i + j] - v[i - j]);
  369. }
  370. return dvdt;
  371. }
  372. // m_f.size() = N+1
  373. if (i < m_f.size() - 1)
  374. {
  375. auto &bf = m_boundary_filters[i];
  376. Real dvdt = bf[0]*v[0];
  377. for (std::size_t j = 1; j < bf.size(); ++j)
  378. {
  379. dvdt += bf[j] * v[j];
  380. }
  381. return dvdt;
  382. }
  383. if (i > std::size(v) - m_f.size() && i < std::size(v))
  384. {
  385. int k = std::size(v) - 1 - i;
  386. auto &bf = m_boundary_filters[k];
  387. Real dvdt = bf[0]*v[std::size(v)-1];
  388. for (std::size_t j = 1; j < bf.size(); ++j)
  389. {
  390. dvdt += bf[j] * v[std::size(v) - 1 - j];
  391. }
  392. return -dvdt;
  393. }
  394. }
  395. else if constexpr (order==2)
  396. {
  397. if (i >= m_f.size() - 1 && i <= std::size(v) - m_f.size())
  398. {
  399. Real d2vdt2 = m_f[0]*v[i];
  400. for (std::size_t j = 1; j < m_f.size(); ++j)
  401. {
  402. d2vdt2 += m_f[j] * (v[i + j] + v[i - j]);
  403. }
  404. return d2vdt2;
  405. }
  406. // m_f.size() = N+1
  407. if (i < m_f.size() - 1)
  408. {
  409. auto &bf = m_boundary_filters[i];
  410. Real d2vdt2 = bf[0]*v[0];
  411. for (std::size_t j = 1; j < bf.size(); ++j)
  412. {
  413. d2vdt2 += bf[j] * v[j];
  414. }
  415. return d2vdt2;
  416. }
  417. if (i > std::size(v) - m_f.size() && i < std::size(v))
  418. {
  419. int k = std::size(v) - 1 - i;
  420. auto &bf = m_boundary_filters[k];
  421. Real d2vdt2 = bf[0] * v[std::size(v) - 1];
  422. for (std::size_t j = 1; j < bf.size(); ++j)
  423. {
  424. d2vdt2 += bf[j] * v[std::size(v) - 1 - j];
  425. }
  426. return d2vdt2;
  427. }
  428. }
  429. // OOB access:
  430. std::string msg = "Out of bounds access in Lanczos derivative.";
  431. msg += "Input vector has length " + std::to_string(std::size(v)) + ", but user requested access at index " + std::to_string(i) + ".";
  432. throw std::out_of_range(msg);
  433. return std::numeric_limits<Real>::quiet_NaN();
  434. }
  435. template<class RandomAccessContainer>
  436. void operator()(RandomAccessContainer const & v, RandomAccessContainer & w) const
  437. {
  438. static_assert(std::is_same_v<typename RandomAccessContainer::value_type, Real>,
  439. "The type of the values in the vector provided does not match the type in the filters.");
  440. if (&w[0] == &v[0])
  441. {
  442. throw std::logic_error("This transform cannot be performed in-place.");
  443. }
  444. if (std::size(v) < m_boundary_filters[0].size())
  445. {
  446. std::string msg = "The input vector must be at least as long as the filter length. ";
  447. msg += "The input vector has length = " + std::to_string(std::size(v)) + ", the filter has length " + std::to_string(m_boundary_filters[0].size());
  448. throw std::length_error(msg);
  449. }
  450. if (std::size(w) < std::size(v))
  451. {
  452. std::string msg = "The output vector (containing the derivative) must be at least as long as the input vector.";
  453. msg += "The output vector has length = " + std::to_string(std::size(w)) + ", the input vector has length " + std::to_string(std::size(v));
  454. throw std::length_error(msg);
  455. }
  456. if constexpr (order==1)
  457. {
  458. for (std::size_t i = 0; i < m_f.size() - 1; ++i)
  459. {
  460. auto &bf = m_boundary_filters[i];
  461. Real dvdt = bf[0] * v[0];
  462. for (std::size_t j = 1; j < bf.size(); ++j)
  463. {
  464. dvdt += bf[j] * v[j];
  465. }
  466. w[i] = dvdt;
  467. }
  468. for(std::size_t i = m_f.size() - 1; i <= std::size(v) - m_f.size(); ++i)
  469. {
  470. Real dvdt = m_f[1] * (v[i + 1] - v[i - 1]);
  471. for (std::size_t j = 2; j < m_f.size(); ++j)
  472. {
  473. dvdt += m_f[j] *(v[i + j] - v[i - j]);
  474. }
  475. w[i] = dvdt;
  476. }
  477. for(std::size_t i = std::size(v) - m_f.size() + 1; i < std::size(v); ++i)
  478. {
  479. int k = std::size(v) - 1 - i;
  480. auto &f = m_boundary_filters[k];
  481. Real dvdt = f[0] * v[std::size(v) - 1];;
  482. for (std::size_t j = 1; j < f.size(); ++j)
  483. {
  484. dvdt += f[j] * v[std::size(v) - 1 - j];
  485. }
  486. w[i] = -dvdt;
  487. }
  488. }
  489. else if constexpr (order==2)
  490. {
  491. // m_f.size() = N+1
  492. for (std::size_t i = 0; i < m_f.size() - 1; ++i)
  493. {
  494. auto &bf = m_boundary_filters[i];
  495. Real d2vdt2 = 0;
  496. for (std::size_t j = 0; j < bf.size(); ++j)
  497. {
  498. d2vdt2 += bf[j] * v[j];
  499. }
  500. w[i] = d2vdt2;
  501. }
  502. for (std::size_t i = m_f.size() - 1; i <= std::size(v) - m_f.size(); ++i)
  503. {
  504. Real d2vdt2 = m_f[0]*v[i];
  505. for (std::size_t j = 1; j < m_f.size(); ++j)
  506. {
  507. d2vdt2 += m_f[j] * (v[i + j] + v[i - j]);
  508. }
  509. w[i] = d2vdt2;
  510. }
  511. for (std::size_t i = std::size(v) - m_f.size() + 1; i < std::size(v); ++i)
  512. {
  513. int k = std::size(v) - 1 - i;
  514. auto &bf = m_boundary_filters[k];
  515. Real d2vdt2 = bf[0] * v[std::size(v) - 1];
  516. for (std::size_t j = 1; j < bf.size(); ++j)
  517. {
  518. d2vdt2 += bf[j] * v[std::size(v) - 1 - j];
  519. }
  520. w[i] = d2vdt2;
  521. }
  522. }
  523. }
  524. template<class RandomAccessContainer>
  525. RandomAccessContainer operator()(RandomAccessContainer const & v) const
  526. {
  527. RandomAccessContainer w(std::size(v));
  528. this->operator()(v, w);
  529. return w;
  530. }
  531. // Don't copy; too big.
  532. discrete_lanczos_derivative( const discrete_lanczos_derivative & ) = delete;
  533. discrete_lanczos_derivative& operator=(const discrete_lanczos_derivative&) = delete;
  534. // Allow moves:
  535. discrete_lanczos_derivative(discrete_lanczos_derivative&&) noexcept = default;
  536. discrete_lanczos_derivative& operator=(discrete_lanczos_derivative&&) noexcept = default;
  537. private:
  538. std::vector<Real> m_f;
  539. std::vector<std::vector<Real>> m_boundary_filters;
  540. Real m_dt;
  541. };
  542. } // namespaces
  543. #endif