1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586 |
- // Copyright 2022 Jay Gohil, Hans Dembinski
- //
- // Distributed under the Boost Software License, version 1.0.
- // (See accompanying file LICENSE_1_0.txt
- // or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_HISTOGRAM_UTILITY_WILSON_INTERVAL_HPP
- #define BOOST_HISTOGRAM_UTILITY_WILSON_INTERVAL_HPP
- #include <boost/histogram/fwd.hpp>
- #include <boost/histogram/utility/binomial_proportion_interval.hpp>
- #include <cmath>
- #include <utility>
- namespace boost {
- namespace histogram {
- namespace utility {
- /**
- Wilson interval.
- The Wilson score interval is simple to compute, has good coverage. Intervals are
- automatically bounded between 0 and 1 and never empty. The interval is asymmetric.
- Wilson, E. B. (1927). "Probable inference, the law of succession, and statistical
- inference". Journal of the American Statistical Association. 22 (158): 209-212.
- doi:10.1080/01621459.1927.10502953. JSTOR 2276774.
- The coverage probability for a random ensemble of fractions is close to the nominal
- value. Unlike the Clopper-Pearson interval, the Wilson score interval is not
- conservative. For some values of the fractions, the interval undercovers and overcovers
- for neighboring values. This is a shared property of all alternatives to the
- Clopper-Pearson interval.
- The Wilson score intervals is widely recommended for general use in the literature. For
- a review of the literature, see R. D. Cousins, K. E. Hymes, J. Tucker, Nucl. Instrum.
- Meth. A 612 (2010) 388-398.
- */
- template <class ValueType>
- class wilson_interval : public binomial_proportion_interval<ValueType> {
- public:
- using value_type = typename wilson_interval::value_type;
- using interval_type = typename wilson_interval::interval_type;
- /** Construct Wilson interval computer.
- @param d Number of standard deviations for the interval. The default value 1
- corresponds to a confidence level of 68 %. Both `deviation` and `confidence_level`
- objects can be used to initialize the interval.
- */
- explicit wilson_interval(deviation d = deviation{1.0}) noexcept
- : z_{static_cast<value_type>(d)} {}
- using binomial_proportion_interval<ValueType>::operator();
- /** Compute interval for given number of successes and failures.
- @param successes Number of successful trials.
- @param failures Number of failed trials.
- */
- interval_type operator()(value_type successes, value_type failures) const noexcept {
- // See https://en.wikipedia.org/wiki/
- // Binomial_proportion_confidence_interval
- // #Wilson_score_interval
- // We make sure calculation is done in single precision if value_type is float
- // by converting all literals to value_type. Double literals in the equation
- // would turn intermediate values to double.
- const value_type half{0.5}, quarter{0.25}, zsq{z_ * z_};
- const value_type total = successes + failures;
- const value_type minv = 1 / (total + zsq);
- const value_type t1 = (successes + half * zsq) * minv;
- const value_type t2 =
- z_ * minv * std::sqrt(successes * failures / total + quarter * zsq);
- return {t1 - t2, t1 + t2};
- }
- private:
- value_type z_;
- };
- } // namespace utility
- } // namespace histogram
- } // namespace boost
- #endif
|