123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 |
- // Boost.GIL (Generic Image Library) - tests
- //
- // Copyright 2020 Olzhas Zhumabek <anonymous.from.applecity@gmail.com>
- //
- // Use, modification and distribution are subject to the Boost Software License,
- // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
- // http://www.boost.org/LICENSE_1_0.txt)
- //
- #ifndef BOOST_GIL_EXTENSION_IMAGE_PROCESSING_HOUGH_TRANSFORM_HPP
- #define BOOST_GIL_EXTENSION_IMAGE_PROCESSING_HOUGH_TRANSFORM_HPP
- #include <boost/gil/extension/image_processing/hough_parameter.hpp>
- #include <boost/gil/extension/rasterization/circle.hpp>
- #include <algorithm>
- #include <cmath>
- #include <cstddef>
- #include <iterator>
- #include <vector>
- namespace boost { namespace gil {
- /// \defgroup HoughTransform
- /// \brief A family of shape detectors that are specified by equation
- ///
- /// Hough transform is a method of mapping (voting) an object which can be described by
- /// equation to single point in accumulator array (also called parameter space).
- /// Each set pixel in edge map votes for every shape it can be part of.
- /// Circle and ellipse transforms are very costly to brute force, while
- /// non-brute-forcing algorithms tend to gamble on probabilities.
- /// \ingroup HoughTransform
- /// \brief Vote for best fit of a line in parameter space
- ///
- /// The input must be an edge map with grayscale pixels. Be aware of overflow inside
- /// accumulator array. The theta parameter is best computed through factory function
- /// provided in hough_parameter.hpp
- template <typename InputView, typename OutputView>
- void hough_line_transform(InputView const& input_view, OutputView const& accumulator_array,
- hough_parameter<double> const& theta,
- hough_parameter<std::ptrdiff_t> const& radius)
- {
- std::ptrdiff_t r_lower_bound = radius.start_point;
- std::ptrdiff_t r_upper_bound = r_lower_bound + radius.step_size * (radius.step_count - 1);
- for (std::ptrdiff_t y = 0; y < input_view.height(); ++y)
- {
- for (std::ptrdiff_t x = 0; x < input_view.width(); ++x)
- {
- if (!input_view(x, y)[0])
- {
- continue;
- }
- for (std::size_t theta_index = 0; theta_index < theta.step_count; ++theta_index)
- {
- double theta_current =
- theta.start_point + theta.step_size * static_cast<double>(theta_index);
- std::ptrdiff_t current_r =
- std::llround(static_cast<double>(x) * std::cos(theta_current) +
- static_cast<double>(y) * std::sin(theta_current));
- if (current_r < r_lower_bound || current_r > r_upper_bound)
- {
- continue;
- }
- std::size_t r_index = static_cast<std::size_t>(
- std::llround((current_r - radius.start_point) / radius.step_size));
- // one more safety guard to not get out of bounds
- if (r_index < radius.step_count)
- {
- accumulator_array(theta_index, r_index)[0] += 1;
- }
- }
- }
- }
- }
- /// \ingroup HoughTransform
- /// \brief Vote for best fit of a circle in parameter space according to rasterizer
- ///
- /// The input must be an edge map with grayscale pixels. Be aware of overflow inside
- /// accumulator array. Rasterizer is used to rasterize a circle for voting. The circle
- /// then is translated for every origin (x, y) in x y parameter space. For available
- /// circle rasterizers, please look at rasterization/circle.hpp
- template <typename ImageView, typename ForwardIterator, typename Rasterizer>
- void hough_circle_transform_brute(ImageView const& input,
- hough_parameter<std::ptrdiff_t> const& radius_parameter,
- hough_parameter<std::ptrdiff_t> const& x_parameter,
- hough_parameter<std::ptrdiff_t> const& y_parameter,
- ForwardIterator d_first, Rasterizer rasterizer)
- {
- for (std::size_t radius_index = 0; radius_index < radius_parameter.step_count; ++radius_index)
- {
- const auto radius = radius_parameter.start_point +
- radius_parameter.step_size * static_cast<std::ptrdiff_t>(radius_index);
- Rasterizer rasterizer{point_t{}, radius};
- std::vector<point_t> circle_points(rasterizer.point_count());
- rasterizer(circle_points.begin());
- // sort by scanline to improve cache coherence for row major images
- std::sort(circle_points.begin(), circle_points.end(),
- [](point_t const& lhs, point_t const& rhs) { return lhs.y < rhs.y; });
- const auto translate = [](std::vector<point_t>& points, point_t offset) {
- std::transform(points.begin(), points.end(), points.begin(), [offset](point_t point) {
- return point_t(point.x + offset.x, point.y + offset.y);
- });
- };
- // in case somebody passes iterator to likes of std::vector<bool>
- typename std::iterator_traits<ForwardIterator>::reference current_image = *d_first;
- // the algorithm has to traverse over parameter space and look at input, instead
- // of vice versa, as otherwise it will call translate too many times, as input
- // is usually bigger than the coordinate portion of parameter space.
- // This might cause extensive cache misses
- for (std::size_t x_index = 0; x_index < x_parameter.step_count; ++x_index)
- {
- for (std::size_t y_index = 0; y_index < y_parameter.step_count; ++y_index)
- {
- const std::ptrdiff_t x = x_parameter.start_point + x_index * x_parameter.step_size;
- const std::ptrdiff_t y = y_parameter.start_point + y_index * y_parameter.step_size;
- auto translated_circle = circle_points;
- translate(translated_circle, {x, y});
- for (const auto& point : translated_circle)
- {
- if (input(point))
- {
- ++current_image(x_index, y_index)[0];
- }
- }
- }
- }
- ++d_first;
- }
- }
- }} // namespace boost::gil
- #endif
|