123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593 |
- // Boost.Geometry (aka GGL, Generic Geometry Library)
- // Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.
- // Copyright (c) 2013-2017 Adam Wulkiewicz, Lodz, Poland.
- // This file was modified by Oracle on 2013-2023.
- // Modifications copyright (c) 2013-2023 Oracle and/or its affiliates.
- // Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle
- // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
- // Parts of Boost.Geometry are redesigned from Geodan's Geographic Library
- // (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands.
- // Use, modification and distribution is subject to the Boost Software License,
- // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
- // http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_GEOMETRY_STRATEGY_SPHERICAL_POINT_IN_POLY_WINDING_HPP
- #define BOOST_GEOMETRY_STRATEGY_SPHERICAL_POINT_IN_POLY_WINDING_HPP
- #include <boost/geometry/core/access.hpp>
- #include <boost/geometry/core/coordinate_system.hpp>
- #include <boost/geometry/core/cs.hpp>
- #include <boost/geometry/core/tags.hpp>
- #include <boost/geometry/util/math.hpp>
- #include <boost/geometry/util/select_calculation_type.hpp>
- #include <boost/geometry/util/normalize_spheroidal_coordinates.hpp>
- #include <boost/geometry/strategy/spherical/expand_point.hpp>
- #include <boost/geometry/strategies/cartesian/point_in_box.hpp>
- #include <boost/geometry/strategies/covered_by.hpp>
- #include <boost/geometry/strategies/side.hpp>
- #include <boost/geometry/strategies/spherical/disjoint_box_box.hpp>
- #include <boost/geometry/strategies/spherical/ssf.hpp>
- #include <boost/geometry/strategies/within.hpp>
- namespace boost { namespace geometry
- {
- namespace strategy { namespace within
- {
- #ifndef DOXYGEN_NO_DETAIL
- namespace detail
- {
- template <typename SideStrategy, typename CalculationType>
- class spherical_winding_base
- {
- template <typename Point, typename PointOfSegment>
- struct calculation_type
- : select_calculation_type
- <
- Point,
- PointOfSegment,
- CalculationType
- >
- {};
- /*! subclass to keep state */
- class counter
- {
- int m_count;
- //int m_count_n;
- int m_count_s;
- int m_raw_count;
- int m_raw_count_anti;
- bool m_touches;
- inline int code() const
- {
- if (m_touches)
- {
- return 0;
- }
- if (m_raw_count != 0 && m_raw_count_anti != 0)
- {
- if (m_raw_count > 0) // right, wrap around south pole
- {
- return (m_count + m_count_s) == 0 ? -1 : 1;
- }
- else // left, wrap around north pole
- {
- //return (m_count + m_count_n) == 0 ? -1 : 1;
- // m_count_n is 0
- return m_count == 0 ? -1 : 1;
- }
- }
- return m_count == 0 ? -1 : 1;
- }
- public :
- friend class spherical_winding_base;
- inline counter()
- : m_count(0)
- //, m_count_n(0)
- , m_count_s(0)
- , m_raw_count(0)
- , m_raw_count_anti(0)
- , m_touches(false)
- {}
- };
- struct count_info
- {
- explicit count_info(int c = 0, bool ia = false)
- : count(c)
- , is_anti(ia)
- {}
- int count;
- bool is_anti;
- };
- public:
- typedef typename SideStrategy::cs_tag cs_tag;
- spherical_winding_base() = default;
- template <typename Model>
- explicit spherical_winding_base(Model const& model)
- : m_side_strategy(model)
- {}
- // Typedefs and static methods to fulfill the concept
- typedef counter state_type;
- template <typename Point, typename PointOfSegment>
- inline bool apply(Point const& point,
- PointOfSegment const& s1, PointOfSegment const& s2,
- counter& state) const
- {
- typedef typename calculation_type<Point, PointOfSegment>::type calc_t;
- typedef typename geometry::detail::cs_angular_units<Point>::type units_t;
- typedef math::detail::constants_on_spheroid<calc_t, units_t> constants;
- bool eq1 = false;
- bool eq2 = false;
- bool s_antipodal = false;
- count_info ci = check_segment(point, s1, s2, state, eq1, eq2, s_antipodal);
- if (ci.count != 0)
- {
- if (! ci.is_anti)
- {
- int side = 0;
- if (ci.count == 1 || ci.count == -1)
- {
- side = side_equal(point, eq1 ? s1 : s2, ci);
- }
- else // count == 2 || count == -2
- {
- if (! s_antipodal)
- {
- // 1 left, -1 right
- side = m_side_strategy.apply(s1, s2, point);
- }
- else
- {
- calc_t const pi = constants::half_period();
- calc_t const s1_lat = get<1>(s1);
- calc_t const s2_lat = get<1>(s2);
- side = math::sign(ci.count)
- * (pi - s1_lat - s2_lat <= pi // segment goes through north pole
- ? -1 // going right all points will be on right side
- : 1); // going right all points will be on left side
- }
- }
- if (side == 0)
- {
- // Point is lying on segment
- state.m_touches = true;
- state.m_count = 0;
- return false;
- }
- // Side is NEG for right, POS for left.
- // The count is -2 for left, 2 for right (or -1/1)
- // Side positive thus means RIGHT and LEFTSIDE or LEFT and RIGHTSIDE
- // See accompagnying figure (TODO)
- if (side * ci.count > 0)
- {
- state.m_count += ci.count;
- }
- state.m_raw_count += ci.count;
- }
- else
- {
- // Count negated because the segment is on the other side of the globe
- // so it is reversed to match this side of the globe
- // Assuming geometry wraps around north pole, for segments on the other side of the globe
- // the point will always be RIGHT+RIGHTSIDE or LEFT+LEFTSIDE, so side*-count always < 0
- //state.m_count_n -= 0;
- // Assuming geometry wraps around south pole, for segments on the other side of the globe
- // the point will always be RIGHT+LEFTSIDE or LEFT+RIGHTSIDE, so side*-count always > 0
- state.m_count_s -= ci.count;
- state.m_raw_count_anti -= ci.count;
- }
- }
- return ! state.m_touches;
- }
- static inline int result(counter const& state)
- {
- return state.code();
- }
- protected:
- template <typename Point, typename PointOfSegment>
- static inline count_info check_segment(Point const& point,
- PointOfSegment const& seg1,
- PointOfSegment const& seg2,
- counter& state,
- bool& eq1, bool& eq2, bool& s_antipodal)
- {
- if (check_touch(point, seg1, seg2, state, eq1, eq2, s_antipodal))
- {
- return count_info(0, false);
- }
- return calculate_count(point, seg1, seg2, eq1, eq2, s_antipodal);
- }
- template <typename Point, typename PointOfSegment>
- static inline int check_touch(Point const& point,
- PointOfSegment const& seg1,
- PointOfSegment const& seg2,
- counter& state,
- bool& eq1,
- bool& eq2,
- bool& s_antipodal)
- {
- typedef typename calculation_type<Point, PointOfSegment>::type calc_t;
- typedef typename geometry::detail::cs_angular_units<Point>::type units_t;
- typedef math::detail::constants_on_spheroid<calc_t, units_t> constants;
- calc_t const c0 = 0;
- calc_t const c2 = 2;
- calc_t const pi = constants::half_period();
- calc_t const half_pi = pi / c2;
- calc_t const p_lon = get<0>(point);
- calc_t const s1_lon = get<0>(seg1);
- calc_t const s2_lon = get<0>(seg2);
- calc_t const p_lat = get<1>(point);
- calc_t const s1_lat = get<1>(seg1);
- calc_t const s2_lat = get<1>(seg2);
- // NOTE: lat in {-90, 90} and arbitrary lon
- // it doesn't matter what lon it is if it's a pole
- // so e.g. if one of the segment endpoints is a pole
- // then only the other lon matters
- bool eq1_strict = longitudes_equal<units_t>(s1_lon, p_lon);
- bool eq2_strict = longitudes_equal<units_t>(s2_lon, p_lon);
- bool eq1_anti = false;
- bool eq2_anti = false;
- calc_t const anti_p_lon = p_lon + (p_lon <= c0 ? pi : -pi);
- eq1 = eq1_strict // lon strictly equal to s1
- || (eq1_anti = longitudes_equal<units_t>(s1_lon, anti_p_lon)); // anti-lon strictly equal to s1
- eq2 = eq2_strict // lon strictly equal to s2
- || (eq2_anti = longitudes_equal<units_t>(s2_lon, anti_p_lon)); // anti-lon strictly equal to s2
- // segment overlapping pole
- calc_t const s_lon_diff = math::longitude_distance_signed<units_t>(s1_lon, s2_lon);
- s_antipodal = math::equals(s_lon_diff, pi);
- if (s_antipodal)
- {
- eq1 = eq2 = eq1 || eq2;
- // segment overlapping pole and point is pole
- if (math::equals(math::abs(p_lat), half_pi))
- {
- eq1 = eq2 = true;
- }
- }
- // check whether point is on a segment with a pole endpoint
- if (math::longitude_distance_signed<units_t>(s2_lon, p_lon) == c0)
- {
- bool const s1_north = math::equals(get<1>(seg1), half_pi);
- bool const s1_south = math::equals(get<1>(seg1), -half_pi);
- if (s1_north || s1_south)
- {
- state.m_touches = s1_south ? s2_lat > p_lat : s2_lat < p_lat;
- return state.m_touches;
- }
- }
- if (math::longitude_distance_signed<units_t>(s1_lon, p_lon) == c0)
- {
- bool const s2_north = math::equals(get<1>(seg2), half_pi);
- bool const s2_south = math::equals(get<1>(seg2), -half_pi);
- if (s2_north || s2_south)
- {
- state.m_touches = s2_south ? s1_lat > p_lat : s1_lat < p_lat;
- return state.m_touches;
- }
- }
- // Both equal p -> segment vertical
- // The only thing which has to be done is check if point is ON segment
- if (eq1 && eq2)
- {
- // segment endpoints on the same sides of the globe
- if (! s_antipodal)
- {
- // p's lat between segment endpoints' lats
- if ( (s1_lat <= p_lat && s2_lat >= p_lat) || (s2_lat <= p_lat && s1_lat >= p_lat) )
- {
- if (!eq1_anti || !eq2_anti)
- {
- state.m_touches = true;
- }
- }
- }
- else
- {
- // going through north or south pole?
- if (pi - s1_lat - s2_lat <= pi)
- {
- if ( (eq1_strict && s1_lat <= p_lat) || (eq2_strict && s2_lat <= p_lat) // north
- || math::equals(p_lat, half_pi) ) // point on north pole
- {
- state.m_touches = true;
- }
- else if (! eq1_strict && ! eq2_strict && math::equals(p_lat, -half_pi) ) // point on south pole
- {
- return false;
- }
- }
- else // south pole
- {
- if ( (eq1_strict && s1_lat >= p_lat) || (eq2_strict && s2_lat >= p_lat) // south
- || math::equals(p_lat, -half_pi) ) // point on south pole
- {
- state.m_touches = true;
- }
- else if (! eq1_strict && ! eq2_strict && math::equals(p_lat, half_pi) ) // point on north pole
- {
- return false;
- }
- }
- }
- return true;
- }
- return false;
- }
- // Called if point is not aligned with a vertical segment
- template <typename Point, typename PointOfSegment>
- static inline count_info calculate_count(Point const& point,
- PointOfSegment const& seg1,
- PointOfSegment const& seg2,
- bool eq1, bool eq2, bool s_antipodal)
- {
- typedef typename calculation_type<Point, PointOfSegment>::type calc_t;
- typedef typename geometry::detail::cs_angular_units<Point>::type units_t;
- typedef math::detail::constants_on_spheroid<calc_t, units_t> constants;
- // If both segment endpoints were poles below checks wouldn't be enough
- // but this means that either both are the same or that they are N/S poles
- // and therefore the segment is not valid.
- // If needed (eq1 && eq2 ? 0) could be returned
- calc_t const c0 = 0;
- calc_t const c2 = 2;
- calc_t const pi = constants::half_period();
- calc_t const half_pi = pi / c2;
- bool const s1_is_pole = math::equals(std::abs(get<1>(seg1)), half_pi);
- bool const s2_is_pole = math::equals(std::abs(get<1>(seg2)), half_pi);
- if (s1_is_pole && s2_is_pole)
- {
- return count_info(0, false);
- }
- calc_t const p = get<0>(point);
- calc_t const s1 = get<0>(seg1);
- calc_t const s2 = get<0>(seg2);
- calc_t const s1_p = math::longitude_distance_signed<units_t>(s1, p);
- if (s_antipodal)
- {
- return count_info(s1_p < c0 ? -2 : 2, false); // choose W/E
- }
- calc_t const s1_s2 = math::longitude_distance_signed<units_t>(s1, s2);
- if (eq1 || eq2) // Point on level s1 or s2
- {
- return count_info(s1_s2 < c0 ? -1 : 1, // choose W/E
- longitudes_equal<units_t>(p + pi, (eq1 ? s1 : s2)));
- }
- // Point between s1 and s2
- if ( math::sign(s1_p) == math::sign(s1_s2)
- && math::abs(s1_p) < math::abs(s1_s2) )
- {
- return count_info(s1_s2 < c0 ? -2 : 2, false); // choose W/E
- }
- calc_t const s1_p_anti = math::longitude_distance_signed<units_t>(s1, p + pi);
- // Anti-Point between s1 and s2
- if ( math::sign(s1_p_anti) == math::sign(s1_s2)
- && math::abs(s1_p_anti) < math::abs(s1_s2) )
- {
- return count_info(s1_s2 < c0 ? -2 : 2, true); // choose W/E
- }
- return count_info(0, false);
- }
- // Fix for https://svn.boost.org/trac/boost/ticket/9628
- // For floating point coordinates, the <D> coordinate of a point is compared
- // with the segment's points using some EPS. If the coordinates are "equal"
- // the sides are calculated. Therefore we can treat a segment as a long areal
- // geometry having some width. There is a small ~triangular area somewhere
- // between the segment's effective area and a segment's line used in sides
- // calculation where the segment is on the one side of the line but on the
- // other side of a segment (due to the width).
- // Below picture assuming D = 1, if D = 0 horiz<->vert, E<->N, RIGHT<->UP.
- // For the s1 of a segment going NE the real side is RIGHT but the point may
- // be detected as LEFT, like this:
- // RIGHT
- // ___----->
- // ^ O Pt __ __
- // EPS __ __
- // v__ __ BUT DETECTED AS LEFT OF THIS LINE
- // _____7
- // _____/
- // _____/
- // In the code below actually D = 0, so segments are nearly-vertical
- // Called when the point is on the same level as one of the segment's points
- // but the point is not aligned with a vertical segment
- template <typename Point, typename PointOfSegment>
- inline int side_equal(Point const& point,
- PointOfSegment const& se,
- count_info const& ci) const
- {
- typedef typename coordinate_type<PointOfSegment>::type scoord_t;
- typedef typename geometry::detail::cs_angular_units<Point>::type units_t;
- if (math::equals(get<1>(point), get<1>(se)))
- {
- return 0;
- }
- // Create a horizontal segment intersecting the original segment's endpoint
- // equal to the point, with the derived direction (E/W).
- PointOfSegment ss1, ss2;
- set<1>(ss1, get<1>(se));
- set<0>(ss1, get<0>(se));
- set<1>(ss2, get<1>(se));
- scoord_t ss20 = get<0>(se);
- if (ci.count > 0)
- {
- ss20 += small_angle<scoord_t, units_t>();
- }
- else
- {
- ss20 -= small_angle<scoord_t, units_t>();
- }
- math::normalize_longitude<units_t>(ss20);
- set<0>(ss2, ss20);
- // Check the side using this vertical segment
- return m_side_strategy.apply(ss1, ss2, point);
- }
- // 1 deg or pi/180 rad
- template <typename CalcT, typename Units>
- static inline CalcT small_angle()
- {
- typedef math::detail::constants_on_spheroid<CalcT, Units> constants;
- return constants::half_period() / CalcT(180);
- }
- template <typename Units, typename CalcT>
- static inline bool longitudes_equal(CalcT const& lon1, CalcT const& lon2)
- {
- return math::equals(
- math::longitude_distance_signed<Units>(lon1, lon2),
- CalcT(0));
- }
- SideStrategy m_side_strategy;
- };
- } // namespace detail
- #endif // DOXYGEN_NO_DETAIL
- /*!
- \brief Within detection using winding rule in spherical coordinate system.
- \ingroup strategies
- \tparam Point \tparam_point
- \tparam PointOfSegment \tparam_segment_point
- \tparam CalculationType \tparam_calculation
- \qbk{
- [heading See also]
- [link geometry.reference.algorithms.within.within_3_with_strategy within (with strategy)]
- }
- */
- template
- <
- typename Point = void, // for backward compatibility
- typename PointOfSegment = Point, // for backward compatibility
- typename CalculationType = void
- >
- class spherical_winding
- : public within::detail::spherical_winding_base
- <
- side::spherical_side_formula<CalculationType>,
- CalculationType
- >
- {};
- #ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
- namespace services
- {
- template <typename PointLike, typename Geometry, typename AnyTag1, typename AnyTag2>
- struct default_strategy<PointLike, Geometry, AnyTag1, AnyTag2, pointlike_tag, polygonal_tag, spherical_tag, spherical_tag>
- {
- typedef within::spherical_winding<> type;
- };
- template <typename PointLike, typename Geometry, typename AnyTag1, typename AnyTag2>
- struct default_strategy<PointLike, Geometry, AnyTag1, AnyTag2, pointlike_tag, linear_tag, spherical_tag, spherical_tag>
- {
- typedef within::spherical_winding<> type;
- };
- } // namespace services
- #endif
- }} // namespace strategy::within
- #ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
- namespace strategy { namespace covered_by { namespace services
- {
- template <typename PointLike, typename Geometry, typename AnyTag1, typename AnyTag2>
- struct default_strategy<PointLike, Geometry, AnyTag1, AnyTag2, pointlike_tag, polygonal_tag, spherical_tag, spherical_tag>
- {
- typedef within::spherical_winding<> type;
- };
- template <typename PointLike, typename Geometry, typename AnyTag1, typename AnyTag2>
- struct default_strategy<PointLike, Geometry, AnyTag1, AnyTag2, pointlike_tag, linear_tag, spherical_tag, spherical_tag>
- {
- typedef within::spherical_winding<> type;
- };
- }}} // namespace strategy::covered_by::services
- #endif
- }} // namespace boost::geometry
- #endif // BOOST_GEOMETRY_STRATEGY_SPHERICAL_POINT_IN_POLY_WINDING_HPP
|