123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200 |
- // Copyright (c) 2017-2018 Alexandr Poltavsky, Antony Polukhin.
- // Copyright (c) 2019-2024 Antony Polukhin.
- //
- // Distributed under the Boost Software License, Version 1.0. (See accompanying
- // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- // The Great Type Loophole (C++14)
- // Initial implementation by Alexandr Poltavsky, http://alexpolt.github.io
- //
- // Description:
- // The Great Type Loophole is a technique that allows to exchange type information with template
- // instantiations. Basically you can assign and read type information during compile time.
- // Here it is used to detect data members of a data type. I described it for the first time in
- // this blog post http://alexpolt.github.io/type-loophole.html .
- //
- // This technique exploits the http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#2118
- // CWG 2118. Stateful metaprogramming via friend injection
- // Note: CWG agreed that such techniques should be ill-formed, although the mechanism for prohibiting them is as yet undetermined.
- #ifndef BOOST_PFR_DETAIL_CORE14_LOOPHOLE_HPP
- #define BOOST_PFR_DETAIL_CORE14_LOOPHOLE_HPP
- #pragma once
- #include <boost/pfr/detail/config.hpp>
- #include <type_traits>
- #include <utility>
- #include <boost/pfr/detail/offset_based_getter.hpp>
- #include <boost/pfr/detail/fields_count.hpp>
- #include <boost/pfr/detail/make_flat_tuple_of_references.hpp>
- #include <boost/pfr/detail/make_integer_sequence.hpp>
- #include <boost/pfr/detail/sequence_tuple.hpp>
- #include <boost/pfr/detail/rvalue_t.hpp>
- #include <boost/pfr/detail/unsafe_declval.hpp>
- #ifdef __clang__
- # pragma clang diagnostic push
- # pragma clang diagnostic ignored "-Wmissing-braces"
- # pragma clang diagnostic ignored "-Wundefined-inline"
- # pragma clang diagnostic ignored "-Wundefined-internal"
- # pragma clang diagnostic ignored "-Wmissing-field-initializers"
- #elif defined(__GNUC__)
- # pragma GCC diagnostic push
- # pragma GCC diagnostic ignored "-Wnon-template-friend"
- #endif
- namespace boost { namespace pfr { namespace detail {
- // tag<T,N> generates friend declarations and helps with overload resolution.
- // There are two types: one with the auto return type, which is the way we read types later.
- // The second one is used in the detection of instantiations without which we'd get multiple
- // definitions.
- template <class T, std::size_t N>
- struct tag {
- friend auto loophole(tag<T,N>);
- };
- // The definitions of friend functions.
- template <class T, class U, std::size_t N, bool B>
- struct fn_def_lref {
- friend auto loophole(tag<T,N>) {
- // Standard Library containers do not SFINAE on invalid copy constructor. Because of that std::vector<std::unique_ptr<int>> reports that it is copyable,
- // which leads to an instantiation error at this place.
- //
- // To workaround the issue, we check that the type U is movable, and move it in that case.
- using no_extents_t = std::remove_all_extents_t<U>;
- return static_cast< std::conditional_t<std::is_move_constructible<no_extents_t>::value, no_extents_t&&, no_extents_t&> >(
- boost::pfr::detail::unsafe_declval<no_extents_t&>()
- );
- }
- };
- template <class T, class U, std::size_t N, bool B>
- struct fn_def_rref {
- friend auto loophole(tag<T,N>) { return std::move(boost::pfr::detail::unsafe_declval< std::remove_all_extents_t<U>& >()); }
- };
- // Those specializations are to avoid multiple definition errors.
- template <class T, class U, std::size_t N>
- struct fn_def_lref<T, U, N, true> {};
- template <class T, class U, std::size_t N>
- struct fn_def_rref<T, U, N, true> {};
- // This has a templated conversion operator which in turn triggers instantiations.
- // Important point, using sizeof seems to be more reliable. Also default template
- // arguments are "cached" (I think). To fix that I provide a U template parameter to
- // the ins functions which do the detection using constexpr friend functions and SFINAE.
- template <class T, std::size_t N>
- struct loophole_ubiq_lref {
- template<class U, std::size_t M> static std::size_t ins(...);
- template<class U, std::size_t M, std::size_t = sizeof(loophole(tag<T,M>{})) > static char ins(int);
- template<class U, std::size_t = sizeof(fn_def_lref<T, U, N, sizeof(ins<U, N>(0)) == sizeof(char)>)>
- constexpr operator U&() const&& noexcept; // `const&&` here helps to avoid ambiguity in loophole instantiations. optional_like test validate that behavior.
- };
- template <class T, std::size_t N>
- struct loophole_ubiq_rref {
- template<class U, std::size_t M> static std::size_t ins(...);
- template<class U, std::size_t M, std::size_t = sizeof(loophole(tag<T,M>{})) > static char ins(int);
- template<class U, std::size_t = sizeof(fn_def_rref<T, U, N, sizeof(ins<U, N>(0)) == sizeof(char)>)>
- constexpr operator U&&() const&& noexcept; // `const&&` here helps to avoid ambiguity in loophole instantiations. optional_like test validate that behavior.
- };
- // This is a helper to turn a data structure into a tuple.
- template <class T, class U>
- struct loophole_type_list_lref;
- template <typename T, std::size_t... I>
- struct loophole_type_list_lref< T, std::index_sequence<I...> >
- // Instantiating loopholes:
- : sequence_tuple::tuple< decltype(T{ loophole_ubiq_lref<T, I>{}... }, 0) >
- {
- using type = sequence_tuple::tuple< decltype(loophole(tag<T, I>{}))... >;
- };
- template <class T, class U>
- struct loophole_type_list_rref;
- template <typename T, std::size_t... I>
- struct loophole_type_list_rref< T, std::index_sequence<I...> >
- // Instantiating loopholes:
- : sequence_tuple::tuple< decltype(T{ loophole_ubiq_rref<T, I>{}... }, 0) >
- {
- using type = sequence_tuple::tuple< decltype(loophole(tag<T, I>{}))... >;
- };
- // Lazily returns loophole_type_list_{lr}ref.
- template <bool IsCopyConstructible /*= true*/, class T, class U>
- struct loophole_type_list_selector {
- using type = loophole_type_list_lref<T, U>;
- };
- template <class T, class U>
- struct loophole_type_list_selector<false /*IsCopyConstructible*/, T, U> {
- using type = loophole_type_list_rref<T, U>;
- };
- template <class T>
- auto tie_as_tuple_loophole_impl(T& lvalue) noexcept {
- using type = std::remove_cv_t<std::remove_reference_t<T>>;
- using indexes = detail::make_index_sequence<fields_count<type>()>;
- using loophole_type_list = typename detail::loophole_type_list_selector<
- std::is_copy_constructible<std::remove_all_extents_t<type>>::value, type, indexes
- >::type;
- using tuple_type = typename loophole_type_list::type;
- return boost::pfr::detail::make_flat_tuple_of_references(
- lvalue,
- offset_based_getter<type, tuple_type>{},
- size_t_<0>{},
- size_t_<tuple_type::size_v>{}
- );
- }
- template <class T>
- auto tie_as_tuple(T& val) noexcept {
- static_assert(
- !std::is_union<T>::value,
- "====================> Boost.PFR: For safety reasons it is forbidden to reflect unions. See `Reflection of unions` section in the docs for more info."
- );
- return boost::pfr::detail::tie_as_tuple_loophole_impl(
- val
- );
- }
- template <class T, class F, std::size_t... I>
- void for_each_field_dispatcher(T& t, F&& f, std::index_sequence<I...>) {
- static_assert(
- !std::is_union<T>::value,
- "====================> Boost.PFR: For safety reasons it is forbidden to reflect unions. See `Reflection of unions` section in the docs for more info."
- );
- std::forward<F>(f)(
- boost::pfr::detail::tie_as_tuple_loophole_impl(t)
- );
- }
- }}} // namespace boost::pfr::detail
- #ifdef __clang__
- # pragma clang diagnostic pop
- #elif defined(__GNUC__)
- # pragma GCC diagnostic pop
- #endif
- #endif // BOOST_PFR_DETAIL_CORE14_LOOPHOLE_HPP
|