123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532 |
- // (C) Copyright John Maddock 2006.
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_SPECIAL_FUNCTIONS_DETAIL_LGAMMA_SMALL
- #define BOOST_MATH_SPECIAL_FUNCTIONS_DETAIL_LGAMMA_SMALL
- #ifdef _MSC_VER
- #pragma once
- #endif
- #include <boost/math/tools/big_constant.hpp>
- #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128)
- //
- // This is the only way we can avoid
- // warning: non-standard suffix on floating constant [-Wpedantic]
- // when building with -Wall -pedantic. Neither __extension__
- // nor #pragma diagnostic ignored work :(
- //
- #pragma GCC system_header
- #endif
- namespace boost{ namespace math{ namespace detail{
- //
- // These need forward declaring to keep GCC happy:
- //
- template <class T, class Policy, class Lanczos>
- T gamma_imp(T z, const Policy& pol, const Lanczos& l);
- template <class T, class Policy>
- T gamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos& l);
- //
- // lgamma for small arguments:
- //
- template <class T, class Policy, class Lanczos>
- T lgamma_small_imp(T z, T zm1, T zm2, const std::integral_constant<int, 64>&, const Policy& /* l */, const Lanczos&)
- {
- // This version uses rational approximations for small
- // values of z accurate enough for 64-bit mantissas
- // (80-bit long doubles), works well for 53-bit doubles as well.
- // Lanczos is only used to select the Lanczos function.
- BOOST_MATH_STD_USING // for ADL of std names
- T result = 0;
- if(z < tools::epsilon<T>())
- {
- result = -log(z);
- }
- else if((zm1 == 0) || (zm2 == 0))
- {
- // nothing to do, result is zero....
- }
- else if(z > 2)
- {
- //
- // Begin by performing argument reduction until
- // z is in [2,3):
- //
- if(z >= 3)
- {
- do
- {
- z -= 1;
- zm2 -= 1;
- result += log(z);
- }while(z >= 3);
- // Update zm2, we need it below:
- zm2 = z - 2;
- }
- //
- // Use the following form:
- //
- // lgamma(z) = (z-2)(z+1)(Y + R(z-2))
- //
- // where R(z-2) is a rational approximation optimised for
- // low absolute error - as long as it's absolute error
- // is small compared to the constant Y - then any rounding
- // error in it's computation will get wiped out.
- //
- // R(z-2) has the following properties:
- //
- // At double: Max error found: 4.231e-18
- // At long double: Max error found: 1.987e-21
- // Maximum Deviation Found (approximation error): 5.900e-24
- //
- static const T P[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.180355685678449379109e-1)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.25126649619989678683e-1)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.494103151567532234274e-1)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.172491608709613993966e-1)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.259453563205438108893e-3)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.541009869215204396339e-3)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.324588649825948492091e-4))
- };
- static const T Q[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.1e1)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.196202987197795200688e1)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.148019669424231326694e1)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.541391432071720958364e0)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.988504251128010129477e-1)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.82130967464889339326e-2)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.224936291922115757597e-3)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.223352763208617092964e-6))
- };
- static const float Y = 0.158963680267333984375e0f;
- T r = zm2 * (z + 1);
- T R = tools::evaluate_polynomial(P, zm2);
- R /= tools::evaluate_polynomial(Q, zm2);
- result += r * Y + r * R;
- }
- else
- {
- //
- // If z is less than 1 use recurrence to shift to
- // z in the interval [1,2]:
- //
- if(z < 1)
- {
- result += -log(z);
- zm2 = zm1;
- zm1 = z;
- z += 1;
- }
- //
- // Two approximations, on for z in [1,1.5] and
- // one for z in [1.5,2]:
- //
- if(z <= T(1.5))
- {
- //
- // Use the following form:
- //
- // lgamma(z) = (z-1)(z-2)(Y + R(z-1))
- //
- // where R(z-1) is a rational approximation optimised for
- // low absolute error - as long as it's absolute error
- // is small compared to the constant Y - then any rounding
- // error in it's computation will get wiped out.
- //
- // R(z-1) has the following properties:
- //
- // At double precision: Max error found: 1.230011e-17
- // At 80-bit long double precision: Max error found: 5.631355e-21
- // Maximum Deviation Found: 3.139e-021
- // Expected Error Term: 3.139e-021
- //
- static const float Y = 0.52815341949462890625f;
- static const T P[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.490622454069039543534e-1)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.969117530159521214579e-1)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.414983358359495381969e0)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.406567124211938417342e0)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.158413586390692192217e0)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.240149820648571559892e-1)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.100346687696279557415e-2))
- };
- static const T Q[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.1e1)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.302349829846463038743e1)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.348739585360723852576e1)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.191415588274426679201e1)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.507137738614363510846e0)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.577039722690451849648e-1)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.195768102601107189171e-2))
- };
- T r = tools::evaluate_polynomial(P, zm1) / tools::evaluate_polynomial(Q, zm1);
- T prefix = zm1 * zm2;
- result += prefix * Y + prefix * r;
- }
- else
- {
- //
- // Use the following form:
- //
- // lgamma(z) = (2-z)(1-z)(Y + R(2-z))
- //
- // where R(2-z) is a rational approximation optimised for
- // low absolute error - as long as it's absolute error
- // is small compared to the constant Y - then any rounding
- // error in it's computation will get wiped out.
- //
- // R(2-z) has the following properties:
- //
- // At double precision, max error found: 1.797565e-17
- // At 80-bit long double precision, max error found: 9.306419e-21
- // Maximum Deviation Found: 2.151e-021
- // Expected Error Term: 2.150e-021
- //
- static const float Y = 0.452017307281494140625f;
- static const T P[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.292329721830270012337e-1)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.144216267757192309184e0)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.142440390738631274135e0)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.542809694055053558157e-1)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.850535976868336437746e-2)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.431171342679297331241e-3))
- };
- static const T Q[] = {
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.1e1)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.150169356054485044494e1)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.846973248876495016101e0)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.220095151814995745555e0)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.25582797155975869989e-1)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.100666795539143372762e-2)),
- static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.827193521891290553639e-6))
- };
- T r = zm2 * zm1;
- T R = tools::evaluate_polynomial(P, T(-zm2)) / tools::evaluate_polynomial(Q, T(-zm2));
- result += r * Y + r * R;
- }
- }
- return result;
- }
- template <class T, class Policy, class Lanczos>
- T lgamma_small_imp(T z, T zm1, T zm2, const std::integral_constant<int, 113>&, const Policy& /* l */, const Lanczos&)
- {
- //
- // This version uses rational approximations for small
- // values of z accurate enough for 113-bit mantissas
- // (128-bit long doubles).
- //
- BOOST_MATH_STD_USING // for ADL of std names
- T result = 0;
- if(z < tools::epsilon<T>())
- {
- result = -log(z);
- BOOST_MATH_INSTRUMENT_CODE(result);
- }
- else if((zm1 == 0) || (zm2 == 0))
- {
- // nothing to do, result is zero....
- }
- else if(z > 2)
- {
- //
- // Begin by performing argument reduction until
- // z is in [2,3):
- //
- if(z >= 3)
- {
- do
- {
- z -= 1;
- result += log(z);
- }while(z >= 3);
- zm2 = z - 2;
- }
- BOOST_MATH_INSTRUMENT_CODE(zm2);
- BOOST_MATH_INSTRUMENT_CODE(z);
- BOOST_MATH_INSTRUMENT_CODE(result);
- //
- // Use the following form:
- //
- // lgamma(z) = (z-2)(z+1)(Y + R(z-2))
- //
- // where R(z-2) is a rational approximation optimised for
- // low absolute error - as long as it's absolute error
- // is small compared to the constant Y - then any rounding
- // error in it's computation will get wiped out.
- //
- // Maximum Deviation Found (approximation error) 3.73e-37
- static const T P[] = {
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.018035568567844937910504030027467476655),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.013841458273109517271750705401202404195),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.062031842739486600078866923383017722399),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.052518418329052161202007865149435256093),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.01881718142472784129191838493267755758),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.0025104830367021839316463675028524702846),
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.00021043176101831873281848891452678568311),
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.00010249622350908722793327719494037981166),
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.11381479670982006841716879074288176994e-4),
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.49999811718089980992888533630523892389e-6),
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.70529798686542184668416911331718963364e-8)
- };
- static const T Q[] = {
- BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
- BOOST_MATH_BIG_CONSTANT(T, 113, 2.5877485070422317542808137697939233685),
- BOOST_MATH_BIG_CONSTANT(T, 113, 2.8797959228352591788629602533153837126),
- BOOST_MATH_BIG_CONSTANT(T, 113, 1.8030885955284082026405495275461180977),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.69774331297747390169238306148355428436),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.17261566063277623942044077039756583802),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.02729301254544230229429621192443000121),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.0026776425891195270663133581960016620433),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.00015244249160486584591370355730402168106),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.43997034032479866020546814475414346627e-5),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.46295080708455613044541885534408170934e-7),
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.93326638207459533682980757982834180952e-11),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.42316456553164995177177407325292867513e-13)
- };
- T R = tools::evaluate_polynomial(P, zm2);
- R /= tools::evaluate_polynomial(Q, zm2);
- static const float Y = 0.158963680267333984375F;
- T r = zm2 * (z + 1);
- result += r * Y + r * R;
- BOOST_MATH_INSTRUMENT_CODE(result);
- }
- else
- {
- //
- // If z is less than 1 use recurrence to shift to
- // z in the interval [1,2]:
- //
- if(z < 1)
- {
- result += -log(z);
- zm2 = zm1;
- zm1 = z;
- z += 1;
- }
- BOOST_MATH_INSTRUMENT_CODE(result);
- BOOST_MATH_INSTRUMENT_CODE(z);
- BOOST_MATH_INSTRUMENT_CODE(zm2);
- //
- // Three approximations, on for z in [1,1.35], [1.35,1.625] and [1.625,1]
- //
- if(z <= 1.35)
- {
- //
- // Use the following form:
- //
- // lgamma(z) = (z-1)(z-2)(Y + R(z-1))
- //
- // where R(z-1) is a rational approximation optimised for
- // low absolute error - as long as it's absolute error
- // is small compared to the constant Y - then any rounding
- // error in it's computation will get wiped out.
- //
- // R(z-1) has the following properties:
- //
- // Maximum Deviation Found (approximation error) 1.659e-36
- // Expected Error Term (theoretical error) 1.343e-36
- // Max error found at 128-bit long double precision 1.007e-35
- //
- static const float Y = 0.54076099395751953125f;
- static const T P[] = {
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.036454670944013329356512090082402429697),
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.066235835556476033710068679907798799959),
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.67492399795577182387312206593595565371),
- BOOST_MATH_BIG_CONSTANT(T, 113, -1.4345555263962411429855341651960000166),
- BOOST_MATH_BIG_CONSTANT(T, 113, -1.4894319559821365820516771951249649563),
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.87210277668067964629483299712322411566),
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.29602090537771744401524080430529369136),
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.0561832587517836908929331992218879676),
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.0053236785487328044334381502530383140443),
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.00018629360291358130461736386077971890789),
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.10164985672213178500790406939467614498e-6),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.13680157145361387405588201461036338274e-8)
- };
- static const T Q[] = {
- BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
- BOOST_MATH_BIG_CONSTANT(T, 113, 4.9106336261005990534095838574132225599),
- BOOST_MATH_BIG_CONSTANT(T, 113, 10.258804800866438510889341082793078432),
- BOOST_MATH_BIG_CONSTANT(T, 113, 11.88588976846826108836629960537466889),
- BOOST_MATH_BIG_CONSTANT(T, 113, 8.3455000546999704314454891036700998428),
- BOOST_MATH_BIG_CONSTANT(T, 113, 3.6428823682421746343233362007194282703),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.97465989807254572142266753052776132252),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.15121052897097822172763084966793352524),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.012017363555383555123769849654484594893),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.0003583032812720649835431669893011257277)
- };
- T r = tools::evaluate_polynomial(P, zm1) / tools::evaluate_polynomial(Q, zm1);
- T prefix = zm1 * zm2;
- result += prefix * Y + prefix * r;
- BOOST_MATH_INSTRUMENT_CODE(result);
- }
- else if(z <= 1.625)
- {
- //
- // Use the following form:
- //
- // lgamma(z) = (2-z)(1-z)(Y + R(2-z))
- //
- // where R(2-z) is a rational approximation optimised for
- // low absolute error - as long as it's absolute error
- // is small compared to the constant Y - then any rounding
- // error in it's computation will get wiped out.
- //
- // R(2-z) has the following properties:
- //
- // Max error found at 128-bit long double precision 9.634e-36
- // Maximum Deviation Found (approximation error) 1.538e-37
- // Expected Error Term (theoretical error) 2.350e-38
- //
- static const float Y = 0.483787059783935546875f;
- static const T P[] = {
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.017977422421608624353488126610933005432),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.18484528905298309555089509029244135703),
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.40401251514859546989565001431430884082),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.40277179799147356461954182877921388182),
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.21993421441282936476709677700477598816),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.069595742223850248095697771331107571011),
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.012681481427699686635516772923547347328),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.0012489322866834830413292771335113136034),
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.57058739515423112045108068834668269608e-4),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.8207548771933585614380644961342925976e-6)
- };
- static const T Q[] = {
- BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
- BOOST_MATH_BIG_CONSTANT(T, 113, -2.9629552288944259229543137757200262073),
- BOOST_MATH_BIG_CONSTANT(T, 113, 3.7118380799042118987185957298964772755),
- BOOST_MATH_BIG_CONSTANT(T, 113, -2.5569815272165399297600586376727357187),
- BOOST_MATH_BIG_CONSTANT(T, 113, 1.0546764918220835097855665680632153367),
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.26574021300894401276478730940980810831),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.03996289731752081380552901986471233462),
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.0033398680924544836817826046380586480873),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.00013288854760548251757651556792598235735),
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.17194794958274081373243161848194745111e-5)
- };
- T r = zm2 * zm1;
- T R = tools::evaluate_polynomial(P, T(0.625 - zm1)) / tools::evaluate_polynomial(Q, T(0.625 - zm1));
- result += r * Y + r * R;
- BOOST_MATH_INSTRUMENT_CODE(result);
- }
- else
- {
- //
- // Same form as above.
- //
- // Max error found (at 128-bit long double precision) 1.831e-35
- // Maximum Deviation Found (approximation error) 8.588e-36
- // Expected Error Term (theoretical error) 1.458e-36
- //
- static const float Y = 0.443811893463134765625f;
- static const T P[] = {
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.021027558364667626231512090082402429494),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.15128811104498736604523586803722368377),
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.26249631480066246699388544451126410278),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.21148748610533489823742352180628489742),
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.093964130697489071999873506148104370633),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.024292059227009051652542804957550866827),
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.0036284453226534839926304745756906117066),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.0002939230129315195346843036254392485984),
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.11088589183158123733132268042570710338e-4),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.13240510580220763969511741896361984162e-6)
- };
- static const T Q[] = {
- BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
- BOOST_MATH_BIG_CONSTANT(T, 113, -2.4240003754444040525462170802796471996),
- BOOST_MATH_BIG_CONSTANT(T, 113, 2.4868383476933178722203278602342786002),
- BOOST_MATH_BIG_CONSTANT(T, 113, -1.4047068395206343375520721509193698547),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.47583809087867443858344765659065773369),
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.09865724264554556400463655444270700132),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.012238223514176587501074150988445109735),
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.00084625068418239194670614419707491797097),
- BOOST_MATH_BIG_CONSTANT(T, 113, 0.2796574430456237061420839429225710602e-4),
- BOOST_MATH_BIG_CONSTANT(T, 113, -0.30202973883316730694433702165188835331e-6)
- };
- // (2 - x) * (1 - x) * (c + R(2 - x))
- T r = zm2 * zm1;
- T R = tools::evaluate_polynomial(P, T(-zm2)) / tools::evaluate_polynomial(Q, T(-zm2));
- result += r * Y + r * R;
- BOOST_MATH_INSTRUMENT_CODE(result);
- }
- }
- BOOST_MATH_INSTRUMENT_CODE(result);
- return result;
- }
- template <class T, class Policy, class Lanczos>
- T lgamma_small_imp(T z, T zm1, T zm2, const std::integral_constant<int, 0>&, const Policy& pol, const Lanczos& l)
- {
- //
- // No rational approximations are available because either
- // T has no numeric_limits support (so we can't tell how
- // many digits it has), or T has more digits than we know
- // what to do with.... we do have a Lanczos approximation
- // though, and that can be used to keep errors under control.
- //
- BOOST_MATH_STD_USING // for ADL of std names
- T result = 0;
- if(z < tools::epsilon<T>())
- {
- result = -log(z);
- }
- else if(z < 0.5)
- {
- // taking the log of tgamma reduces the error, no danger of overflow here:
- result = log(gamma_imp(z, pol, Lanczos()));
- }
- else if(z >= 3)
- {
- // taking the log of tgamma reduces the error, no danger of overflow here:
- result = log(gamma_imp(z, pol, Lanczos()));
- }
- else if(z >= 1.5)
- {
- // special case near 2:
- T dz = zm2;
- result = dz * log((z + lanczos_g_near_1_and_2(l) - T(0.5)) / boost::math::constants::e<T>());
- result += boost::math::log1p(dz / (lanczos_g_near_1_and_2(l) + T(1.5)), pol) * T(1.5);
- result += boost::math::log1p(Lanczos::lanczos_sum_near_2(dz), pol);
- }
- else
- {
- // special case near 1:
- T dz = zm1;
- result = dz * log((z + lanczos_g_near_1_and_2(l) - T(0.5)) / boost::math::constants::e<T>());
- result += boost::math::log1p(dz / (lanczos_g_near_1_and_2(l) + T(0.5)), pol) / 2;
- result += boost::math::log1p(Lanczos::lanczos_sum_near_1(dz), pol);
- }
- return result;
- }
- }}} // namespaces
- #endif // BOOST_MATH_SPECIAL_FUNCTIONS_DETAIL_LGAMMA_SMALL
|