123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131 |
- ///////////////////////////////////////////////////////////////////////////////
- // Copyright 2014 Anton Bikineev
- // Copyright 2014 Christopher Kormanyos
- // Copyright 2014 John Maddock
- // Copyright 2014 Paul Bristow
- // Distributed under the Boost
- // Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- //
- #ifndef BOOST_MATH_HYPERGEOMETRIC_PADE_HPP
- #define BOOST_MATH_HYPERGEOMETRIC_PADE_HPP
- namespace boost{ namespace math{ namespace detail{
- // Luke: C ---------- SUBROUTINE R1F1P(CP, Z, A, B, N) ----------
- // Luke: C ----- PADE APPROXIMATION OF 1F1( 1 ; CP ; -Z ) -------
- template <class T, class Policy>
- inline T hypergeometric_1F1_pade(const T& cp, const T& zp, const Policy& )
- {
- BOOST_MATH_STD_USING
- static const T one = T(1);
- // Luke: C ------------- INITIALIZATION -------------
- const T z = -zp;
- const T zz = z * z;
- T b0 = one;
- T a0 = one;
- T xi1 = one;
- T ct1 = cp + one;
- T cp1 = cp - one;
- T b1 = one + (z / ct1);
- T a1 = b1 - (z / cp);
- const unsigned max_iterations = boost::math::policies::get_max_series_iterations<Policy>();
- T b2 = T(0), a2 = T(0);
- T result = T(0), prev_result;
- for (unsigned k = 1; k < max_iterations; ++k)
- {
- // Luke: C ----- CALCULATION OF THE MULTIPLIERS -----
- // Luke: C ----------- FOR THE RECURSION ------------
- const T ct2 = ct1 * ct1;
- const T g1 = one + ((cp1 / (ct2 + ct1 + ct1)) * z);
- const T g2 = ((xi1 / (ct2 - one)) * ((xi1 + cp1) / ct2)) * zz;
- // Luke: C ------- THE RECURRENCE RELATIONS ---------
- // Luke: C ------------ ARE AS FOLLOWS --------------
- b2 = (g1 * b1) + (g2 * b0);
- a2 = (g1 * a1) + (g2 * a0);
- prev_result = result;
- result = a2 / b2;
- // condition for interruption
- if ((fabs(result) * boost::math::tools::epsilon<T>()) > fabs(result - prev_result))
- break;
- b0 = b1; b1 = b2;
- a0 = a1; a1 = a2;
- ct1 += 2;
- xi1 += 1;
- }
- return a2 / b2;
- }
- // Luke: C -------- SUBROUTINE R2F1P(BP, CP, Z, A, B, N) --------
- // Luke: C ---- PADE APPROXIMATION OF 2F1( 1 , BP; CP ; -Z ) ----
- template <class T, class Policy>
- inline T hypergeometric_2F1_pade(const T& bp, const T& cp, const T& zp, const Policy&)
- {
- BOOST_MATH_STD_USING
- static const T one = T(1);
- // Luke: C ---------- INITIALIZATION -----------
- const T z = -zp;
- const T zz = z * z;
- T b0 = one;
- T a0 = one;
- T xi1 = one;
- T ct1 = cp;
- const T b1c1 = (cp - one) * (bp - one);
- T b1 = one + ((z / (cp + one)) * (bp + one));
- T a1 = b1 - ((bp / cp) * z);
- const unsigned max_iterations = boost::math::policies::get_max_series_iterations<Policy>();
- T b2 = T(0), a2 = T(0);
- T result = T(0), prev_result = a1 / b1;
- for (unsigned k = 1; k < max_iterations; ++k)
- {
- // Luke: C ----- CALCULATION OF THE MULTIPLIERS -----
- // Luke: C ----------- FOR THE RECURSION ------------
- const T ct2 = ct1 + xi1;
- const T ct3 = ct2 * ct2;
- const T g2 = (((((ct1 / ct3) * (bp - ct1)) / (ct3 - one)) * xi1) * (bp + xi1)) * zz;
- ++xi1;
- const T g1 = one + (((((xi1 + xi1) * ct1) + b1c1) / (ct3 + ct2 + ct2)) * z);
- // Luke: C ------- THE RECURRENCE RELATIONS ---------
- // Luke: C ------------ ARE AS FOLLOWS --------------
- b2 = (g1 * b1) + (g2 * b0);
- a2 = (g1 * a1) + (g2 * a0);
- prev_result = result;
- result = a2 / b2;
- // condition for interruption
- if ((fabs(result) * boost::math::tools::epsilon<T>()) > fabs(result - prev_result))
- break;
- b0 = b1; b1 = b2;
- a0 = a1; a1 = a2;
- ++ct1;
- }
- return a2 / b2;
- }
- } } } // namespaces
- #endif // BOOST_MATH_HYPERGEOMETRIC_PADE_HPP
|