123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438 |
- // Copyright Nick Thompson, 2020
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0.
- // (See accompanying file LICENSE_1_0.txt
- // or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_INTERPOLATORS_DETAIL_CUBIC_HERMITE_DETAIL_HPP
- #define BOOST_MATH_INTERPOLATORS_DETAIL_CUBIC_HERMITE_DETAIL_HPP
- #include <stdexcept>
- #include <algorithm>
- #include <cmath>
- #include <iostream>
- #include <sstream>
- #include <limits>
- namespace boost {
- namespace math {
- namespace interpolators {
- namespace detail {
- template<class RandomAccessContainer>
- class cubic_hermite_detail {
- public:
- using Real = typename RandomAccessContainer::value_type;
- using Size = typename RandomAccessContainer::size_type;
- cubic_hermite_detail(RandomAccessContainer && x, RandomAccessContainer && y, RandomAccessContainer dydx)
- : x_{std::move(x)}, y_{std::move(y)}, dydx_{std::move(dydx)}
- {
- using std::abs;
- using std::isnan;
- if (x_.size() != y_.size())
- {
- throw std::domain_error("There must be the same number of ordinates as abscissas.");
- }
- if (x_.size() != dydx_.size())
- {
- throw std::domain_error("There must be the same number of ordinates as derivative values.");
- }
- if (x_.size() < 2)
- {
- throw std::domain_error("Must be at least two data points.");
- }
- Real x0 = x_[0];
- for (size_t i = 1; i < x_.size(); ++i)
- {
- Real x1 = x_[i];
- if (x1 <= x0)
- {
- std::ostringstream oss;
- oss.precision(std::numeric_limits<Real>::digits10+3);
- oss << "Abscissas must be listed in strictly increasing order x0 < x1 < ... < x_{n-1}, ";
- oss << "but at x[" << i - 1 << "] = " << x0 << ", and x[" << i << "] = " << x1 << ".\n";
- throw std::domain_error(oss.str());
- }
- x0 = x1;
- }
- }
- void push_back(Real x, Real y, Real dydx)
- {
- using std::abs;
- using std::isnan;
- if (x <= x_.back())
- {
- throw std::domain_error("Calling push_back must preserve the monotonicity of the x's");
- }
- x_.push_back(x);
- y_.push_back(y);
- dydx_.push_back(dydx);
- }
- Real operator()(Real x) const
- {
- if (x < x_[0] || x > x_.back())
- {
- std::ostringstream oss;
- oss.precision(std::numeric_limits<Real>::digits10+3);
- oss << "Requested abscissa x = " << x << ", which is outside of allowed range ["
- << x_[0] << ", " << x_.back() << "]";
- throw std::domain_error(oss.str());
- }
- // We need t := (x-x_k)/(x_{k+1}-x_k) \in [0,1) for this to work.
- // Sadly this neccessitates this loathesome check, otherwise we get t = 1 at x = xf.
- if (x == x_.back())
- {
- return y_.back();
- }
- auto it = std::upper_bound(x_.begin(), x_.end(), x);
- auto i = std::distance(x_.begin(), it) -1;
- Real x0 = *(it-1);
- Real x1 = *it;
- Real y0 = y_[i];
- Real y1 = y_[i+1];
- Real s0 = dydx_[i];
- Real s1 = dydx_[i+1];
- Real dx = (x1-x0);
- Real t = (x-x0)/dx;
- // See the section 'Representations' in the page
- // https://en.wikipedia.org/wiki/Cubic_Hermite_spline
- Real y = (1-t)*(1-t)*(y0*(1+2*t) + s0*(x-x0))
- + t*t*(y1*(3-2*t) + dx*s1*(t-1));
- return y;
- }
- Real prime(Real x) const
- {
- if (x < x_[0] || x > x_.back())
- {
- std::ostringstream oss;
- oss.precision(std::numeric_limits<Real>::digits10+3);
- oss << "Requested abscissa x = " << x << ", which is outside of allowed range ["
- << x_[0] << ", " << x_.back() << "]";
- throw std::domain_error(oss.str());
- }
- if (x == x_.back())
- {
- return dydx_.back();
- }
- auto it = std::upper_bound(x_.begin(), x_.end(), x);
- auto i = std::distance(x_.begin(), it) -1;
- Real x0 = *(it-1);
- Real x1 = *it;
- Real y0 = y_[i];
- Real y1 = y_[i+1];
- Real s0 = dydx_[i];
- Real s1 = dydx_[i+1];
- Real dx = (x1-x0);
- Real d1 = (y1 - y0 - s0*dx)/(dx*dx);
- Real d2 = (s1 - s0)/(2*dx);
- Real c2 = 3*d1 - 2*d2;
- Real c3 = 2*(d2 - d1)/dx;
- return s0 + 2*c2*(x-x0) + 3*c3*(x-x0)*(x-x0);
- }
- friend std::ostream& operator<<(std::ostream & os, const cubic_hermite_detail & m)
- {
- os << "(x,y,y') = {";
- for (size_t i = 0; i < m.x_.size() - 1; ++i)
- {
- os << "(" << m.x_[i] << ", " << m.y_[i] << ", " << m.dydx_[i] << "), ";
- }
- auto n = m.x_.size()-1;
- os << "(" << m.x_[n] << ", " << m.y_[n] << ", " << m.dydx_[n] << ")}";
- return os;
- }
- Size size() const
- {
- return x_.size();
- }
- int64_t bytes() const
- {
- return 3*x_.size()*sizeof(Real) + 3*sizeof(x_);
- }
- std::pair<Real, Real> domain() const
- {
- return {x_.front(), x_.back()};
- }
- RandomAccessContainer x_;
- RandomAccessContainer y_;
- RandomAccessContainer dydx_;
- };
- template<class RandomAccessContainer>
- class cardinal_cubic_hermite_detail {
- public:
- using Real = typename RandomAccessContainer::value_type;
- using Size = typename RandomAccessContainer::size_type;
- cardinal_cubic_hermite_detail(RandomAccessContainer && y, RandomAccessContainer dydx, Real x0, Real dx)
- : y_{std::move(y)}, dy_{std::move(dydx)}, x0_{x0}, inv_dx_{1/dx}
- {
- using std::abs;
- using std::isnan;
- if (y_.size() != dy_.size())
- {
- throw std::domain_error("There must be the same number of derivatives as ordinates.");
- }
- if (y_.size() < 2)
- {
- throw std::domain_error("Must be at least two data points.");
- }
- if (dx <= 0)
- {
- throw std::domain_error("dx > 0 is required.");
- }
- for (auto & dy : dy_)
- {
- dy *= dx;
- }
- }
- // Why not implement push_back? It's awkward: If the buffer is circular, x0_ += dx_.
- // If the buffer is not circular, x0_ is unchanged.
- // We need a concept for circular_buffer!
- inline Real operator()(Real x) const
- {
- const Real xf = x0_ + (y_.size()-1)/inv_dx_;
- if (x < x0_ || x > xf)
- {
- std::ostringstream oss;
- oss.precision(std::numeric_limits<Real>::digits10+3);
- oss << "Requested abscissa x = " << x << ", which is outside of allowed range ["
- << x0_ << ", " << xf << "]";
- throw std::domain_error(oss.str());
- }
- if (x == xf)
- {
- return y_.back();
- }
- return this->unchecked_evaluation(x);
- }
- inline Real unchecked_evaluation(Real x) const
- {
- using std::floor;
- Real s = (x-x0_)*inv_dx_;
- Real ii = floor(s);
- auto i = static_cast<decltype(y_.size())>(ii);
- Real t = s - ii;
- Real y0 = y_[i];
- Real y1 = y_[i+1];
- Real dy0 = dy_[i];
- Real dy1 = dy_[i+1];
- Real r = 1-t;
- return r*r*(y0*(1+2*t) + dy0*t)
- + t*t*(y1*(3-2*t) - dy1*r);
- }
- inline Real prime(Real x) const
- {
- const Real xf = x0_ + (y_.size()-1)/inv_dx_;
- if (x < x0_ || x > xf)
- {
- std::ostringstream oss;
- oss.precision(std::numeric_limits<Real>::digits10+3);
- oss << "Requested abscissa x = " << x << ", which is outside of allowed range ["
- << x0_ << ", " << xf << "]";
- throw std::domain_error(oss.str());
- }
- if (x == xf)
- {
- return dy_.back()*inv_dx_;
- }
- return this->unchecked_prime(x);
- }
- inline Real unchecked_prime(Real x) const
- {
- using std::floor;
- Real s = (x-x0_)*inv_dx_;
- Real ii = floor(s);
- auto i = static_cast<decltype(y_.size())>(ii);
- Real t = s - ii;
- Real y0 = y_[i];
- Real y1 = y_[i+1];
- Real dy0 = dy_[i];
- Real dy1 = dy_[i+1];
- Real dy = 6*t*(1-t)*(y1 - y0) + (3*t*t - 4*t+1)*dy0 + t*(3*t-2)*dy1;
- return dy*inv_dx_;
- }
- Size size() const
- {
- return y_.size();
- }
- int64_t bytes() const
- {
- return 2*y_.size()*sizeof(Real) + 2*sizeof(y_) + 2*sizeof(Real);
- }
- std::pair<Real, Real> domain() const
- {
- Real xf = x0_ + (y_.size()-1)/inv_dx_;
- return {x0_, xf};
- }
- private:
- RandomAccessContainer y_;
- RandomAccessContainer dy_;
- Real x0_;
- Real inv_dx_;
- };
- template<class RandomAccessContainer>
- class cardinal_cubic_hermite_detail_aos {
- public:
- using Point = typename RandomAccessContainer::value_type;
- using Real = typename Point::value_type;
- using Size = typename RandomAccessContainer::size_type;
- cardinal_cubic_hermite_detail_aos(RandomAccessContainer && dat, Real x0, Real dx)
- : dat_{std::move(dat)}, x0_{x0}, inv_dx_{1/dx}
- {
- if (dat_.size() < 2)
- {
- throw std::domain_error("Must be at least two data points.");
- }
- if (dat_[0].size() != 2)
- {
- throw std::domain_error("Each datum must contain (y, y'), and nothing else.");
- }
- if (dx <= 0)
- {
- throw std::domain_error("dx > 0 is required.");
- }
- for (auto & d : dat_)
- {
- d[1] *= dx;
- }
- }
- inline Real operator()(Real x) const
- {
- const Real xf = x0_ + (dat_.size()-1)/inv_dx_;
- if (x < x0_ || x > xf)
- {
- std::ostringstream oss;
- oss.precision(std::numeric_limits<Real>::digits10+3);
- oss << "Requested abscissa x = " << x << ", which is outside of allowed range ["
- << x0_ << ", " << xf << "]";
- throw std::domain_error(oss.str());
- }
- if (x == xf)
- {
- return dat_.back()[0];
- }
- return this->unchecked_evaluation(x);
- }
- inline Real unchecked_evaluation(Real x) const
- {
- using std::floor;
- Real s = (x-x0_)*inv_dx_;
- Real ii = floor(s);
- auto i = static_cast<decltype(dat_.size())>(ii);
- Real t = s - ii;
- // If we had infinite precision, this would never happen.
- // But we don't have infinite precision.
- if (t == 0)
- {
- return dat_[i][0];
- }
- Real y0 = dat_[i][0];
- Real y1 = dat_[i+1][0];
- Real dy0 = dat_[i][1];
- Real dy1 = dat_[i+1][1];
- Real r = 1-t;
- return r*r*(y0*(1+2*t) + dy0*t)
- + t*t*(y1*(3-2*t) - dy1*r);
- }
- inline Real prime(Real x) const
- {
- const Real xf = x0_ + (dat_.size()-1)/inv_dx_;
- if (x < x0_ || x > xf)
- {
- std::ostringstream oss;
- oss.precision(std::numeric_limits<Real>::digits10+3);
- oss << "Requested abscissa x = " << x << ", which is outside of allowed range ["
- << x0_ << ", " << xf << "]";
- throw std::domain_error(oss.str());
- }
- if (x == xf)
- {
- return dat_.back()[1]*inv_dx_;
- }
- return this->unchecked_prime(x);
- }
- inline Real unchecked_prime(Real x) const
- {
- using std::floor;
- Real s = (x-x0_)*inv_dx_;
- Real ii = floor(s);
- auto i = static_cast<decltype(dat_.size())>(ii);
- Real t = s - ii;
- if (t == 0)
- {
- return dat_[i][1]*inv_dx_;
- }
- Real y0 = dat_[i][0];
- Real dy0 = dat_[i][1];
- Real y1 = dat_[i+1][0];
- Real dy1 = dat_[i+1][1];
- Real dy = 6*t*(1-t)*(y1 - y0) + (3*t*t - 4*t+1)*dy0 + t*(3*t-2)*dy1;
- return dy*inv_dx_;
- }
- Size size() const
- {
- return dat_.size();
- }
- int64_t bytes() const
- {
- return dat_.size()*dat_[0].size()*sizeof(Real) + sizeof(dat_) + 2*sizeof(Real);
- }
- std::pair<Real, Real> domain() const
- {
- Real xf = x0_ + (dat_.size()-1)/inv_dx_;
- return {x0_, xf};
- }
- private:
- RandomAccessContainer dat_;
- Real x0_;
- Real inv_dx_;
- };
- }
- }
- }
- }
- #endif
|