123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330 |
- // Copyright Nick Thompson, 2017
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0.
- // (See accompanying file LICENSE_1_0.txt
- // or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef CUBIC_B_SPLINE_DETAIL_HPP
- #define CUBIC_B_SPLINE_DETAIL_HPP
- #include <limits>
- #include <cmath>
- #include <vector>
- #include <memory>
- #include <boost/math/constants/constants.hpp>
- #include <boost/math/special_functions/fpclassify.hpp>
- namespace boost{ namespace math{ namespace detail{
- template <class Real>
- class cubic_b_spline_imp
- {
- public:
- // If you don't know the value of the derivative at the endpoints, leave them as nans and the routine will estimate them.
- // f[0] = f(a), f[length -1] = b, step_size = (b - a)/(length -1).
- template <class BidiIterator>
- cubic_b_spline_imp(BidiIterator f, BidiIterator end_p, Real left_endpoint, Real step_size,
- Real left_endpoint_derivative = std::numeric_limits<Real>::quiet_NaN(),
- Real right_endpoint_derivative = std::numeric_limits<Real>::quiet_NaN());
- Real operator()(Real x) const;
- Real prime(Real x) const;
- Real double_prime(Real x) const;
- private:
- std::vector<Real> m_beta;
- Real m_h_inv;
- Real m_a;
- Real m_avg;
- };
- template <class Real>
- Real b3_spline(Real x)
- {
- using std::abs;
- Real absx = abs(x);
- if (absx < 1)
- {
- Real y = 2 - absx;
- Real z = 1 - absx;
- return boost::math::constants::sixth<Real>()*(y*y*y - 4*z*z*z);
- }
- if (absx < 2)
- {
- Real y = 2 - absx;
- return boost::math::constants::sixth<Real>()*y*y*y;
- }
- return static_cast<Real>(0);
- }
- template<class Real>
- Real b3_spline_prime(Real x)
- {
- if (x < 0)
- {
- return -b3_spline_prime(-x);
- }
- if (x < 1)
- {
- return x*(3*boost::math::constants::half<Real>()*x - 2);
- }
- if (x < 2)
- {
- return -boost::math::constants::half<Real>()*(2 - x)*(2 - x);
- }
- return static_cast<Real>(0);
- }
- template<class Real>
- Real b3_spline_double_prime(Real x)
- {
- if (x < 0)
- {
- return b3_spline_double_prime(-x);
- }
- if (x < 1)
- {
- return 3*x - 2;
- }
- if (x < 2)
- {
- return (2 - x);
- }
- return static_cast<Real>(0);
- }
- template <class Real>
- template <class BidiIterator>
- cubic_b_spline_imp<Real>::cubic_b_spline_imp(BidiIterator f, BidiIterator end_p, Real left_endpoint, Real step_size,
- Real left_endpoint_derivative, Real right_endpoint_derivative) : m_a(left_endpoint), m_avg(0)
- {
- using boost::math::constants::third;
- std::size_t length = end_p - f;
- if (length < 5)
- {
- if (boost::math::isnan(left_endpoint_derivative) || boost::math::isnan(right_endpoint_derivative))
- {
- throw std::logic_error("Interpolation using a cubic b spline with derivatives estimated at the endpoints requires at least 5 points.\n");
- }
- if (length < 3)
- {
- throw std::logic_error("Interpolation using a cubic b spline requires at least 3 points.\n");
- }
- }
- if (boost::math::isnan(left_endpoint))
- {
- throw std::logic_error("Left endpoint is NAN; this is disallowed.\n");
- }
- if (left_endpoint + length*step_size >= (std::numeric_limits<Real>::max)())
- {
- throw std::logic_error("Right endpoint overflows the maximum representable number of the specified precision.\n");
- }
- if (step_size <= 0)
- {
- throw std::logic_error("The step size must be strictly > 0.\n");
- }
- // Storing the inverse of the stepsize does provide a measurable speedup.
- // It's not huge, but nonetheless worthwhile.
- m_h_inv = 1/step_size;
- // Following Kress's notation, s'(a) = a1, s'(b) = b1
- Real a1 = left_endpoint_derivative;
- // See the finite-difference table on Wikipedia for reference on how
- // to construct high-order estimates for one-sided derivatives:
- // https://en.wikipedia.org/wiki/Finite_difference_coefficient#Forward_and_backward_finite_difference
- // Here, we estimate then to O(h^4), as that is the maximum accuracy we could obtain from this method.
- if (boost::math::isnan(a1))
- {
- // For simple functions (linear, quadratic, so on)
- // almost all the error comes from derivative estimation.
- // This does pairwise summation which gives us another digit of accuracy over naive summation.
- Real t0 = 4*(f[1] + third<Real>()*f[3]);
- Real t1 = -(25*third<Real>()*f[0] + f[4])/4 - 3*f[2];
- a1 = m_h_inv*(t0 + t1);
- }
- Real b1 = right_endpoint_derivative;
- if (boost::math::isnan(b1))
- {
- size_t n = length - 1;
- Real t0 = 4*(f[n-3] + third<Real>()*f[n - 1]);
- Real t1 = -(25*third<Real>()*f[n - 4] + f[n])/4 - 3*f[n - 2];
- b1 = m_h_inv*(t0 + t1);
- }
- // s(x) = \sum \alpha_i B_{3}( (x- x_i - a)/h )
- // Of course we must reindex from Kress's notation, since he uses negative indices which make C++ unhappy.
- m_beta.resize(length + 2, std::numeric_limits<Real>::quiet_NaN());
- // Since the splines have compact support, they decay to zero very fast outside the endpoints.
- // This is often very annoying; we'd like to evaluate the interpolant a little bit outside the
- // boundary [a,b] without massive error.
- // A simple way to deal with this is just to subtract the DC component off the signal, so we need the average.
- // This algorithm for computing the average is recommended in
- // http://www.heikohoffmann.de/htmlthesis/node134.html
- Real t = 1;
- for (size_t i = 0; i < length; ++i)
- {
- if (boost::math::isnan(f[i]))
- {
- std::string err = "This function you are trying to interpolate is a nan at index " + std::to_string(i) + "\n";
- throw std::logic_error(err);
- }
- m_avg += (f[i] - m_avg) / t;
- t += 1;
- }
- // Now we must solve an almost-tridiagonal system, which requires O(N) operations.
- // There are, in fact 5 diagonals, but they only differ from zero on the first and last row,
- // so we can patch up the tridiagonal row reduction algorithm to deal with two special rows.
- // See Kress, equations 8.41
- // The the "tridiagonal" matrix is:
- // 1 0 -1
- // 1 4 1
- // 1 4 1
- // 1 4 1
- // ....
- // 1 4 1
- // 1 0 -1
- // Numerical estimate indicate that as N->Infinity, cond(A) -> 6.9, so this matrix is good.
- std::vector<Real> rhs(length + 2, std::numeric_limits<Real>::quiet_NaN());
- std::vector<Real> super_diagonal(length + 2, std::numeric_limits<Real>::quiet_NaN());
- rhs[0] = -2*step_size*a1;
- rhs[rhs.size() - 1] = -2*step_size*b1;
- super_diagonal[0] = 0;
- for(size_t i = 1; i < rhs.size() - 1; ++i)
- {
- rhs[i] = 6*(f[i - 1] - m_avg);
- super_diagonal[i] = 1;
- }
- // One step of row reduction on the first row to patch up the 5-diagonal problem:
- // 1 0 -1 | r0
- // 1 4 1 | r1
- // mapsto:
- // 1 0 -1 | r0
- // 0 4 2 | r1 - r0
- // mapsto
- // 1 0 -1 | r0
- // 0 1 1/2| (r1 - r0)/4
- super_diagonal[1] = 0.5;
- rhs[1] = (rhs[1] - rhs[0])/4;
- // Now do a tridiagonal row reduction the standard way, until just before the last row:
- for (size_t i = 2; i < rhs.size() - 1; ++i)
- {
- Real diagonal = 4 - super_diagonal[i - 1];
- rhs[i] = (rhs[i] - rhs[i - 1])/diagonal;
- super_diagonal[i] /= diagonal;
- }
- // Now the last row, which is in the form
- // 1 sd[n-3] 0 | rhs[n-3]
- // 0 1 sd[n-2] | rhs[n-2]
- // 1 0 -1 | rhs[n-1]
- Real final_subdiag = -super_diagonal[rhs.size() - 3];
- rhs[rhs.size() - 1] = (rhs[rhs.size() - 1] - rhs[rhs.size() - 3])/final_subdiag;
- Real final_diag = -1/final_subdiag;
- // Now we're here:
- // 1 sd[n-3] 0 | rhs[n-3]
- // 0 1 sd[n-2] | rhs[n-2]
- // 0 1 final_diag | (rhs[n-1] - rhs[n-3])/diag
- final_diag = final_diag - super_diagonal[rhs.size() - 2];
- rhs[rhs.size() - 1] = rhs[rhs.size() - 1] - rhs[rhs.size() - 2];
- // Back substitutions:
- m_beta[rhs.size() - 1] = rhs[rhs.size() - 1]/final_diag;
- for(size_t i = rhs.size() - 2; i > 0; --i)
- {
- m_beta[i] = rhs[i] - super_diagonal[i]*m_beta[i + 1];
- }
- m_beta[0] = m_beta[2] + rhs[0];
- }
- template<class Real>
- Real cubic_b_spline_imp<Real>::operator()(Real x) const
- {
- // See Kress, 8.40: Since B3 has compact support, we don't have to sum over all terms,
- // just the (at most 5) whose support overlaps the argument.
- Real z = m_avg;
- Real t = m_h_inv*(x - m_a) + 1;
- using std::max;
- using std::min;
- using std::ceil;
- using std::floor;
- size_t k_min = static_cast<size_t>((max)(static_cast<long>(0), boost::math::ltrunc(ceil(t - 2))));
- size_t k_max = static_cast<size_t>((max)((min)(static_cast<long>(m_beta.size() - 1), boost::math::ltrunc(floor(t + 2))), 0l));
- for (size_t k = k_min; k <= k_max; ++k)
- {
- z += m_beta[k]*b3_spline(t - k);
- }
- return z;
- }
- template<class Real>
- Real cubic_b_spline_imp<Real>::prime(Real x) const
- {
- Real z = 0;
- Real t = m_h_inv*(x - m_a) + 1;
- using std::max;
- using std::min;
- using std::ceil;
- using std::floor;
- size_t k_min = static_cast<size_t>((max)(static_cast<long>(0), boost::math::ltrunc(ceil(t - 2))));
- size_t k_max = static_cast<size_t>((min)(static_cast<long>(m_beta.size() - 1), boost::math::ltrunc(floor(t + 2))));
- for (size_t k = k_min; k <= k_max; ++k)
- {
- z += m_beta[k]*b3_spline_prime(t - k);
- }
- return z*m_h_inv;
- }
- template<class Real>
- Real cubic_b_spline_imp<Real>::double_prime(Real x) const
- {
- Real z = 0;
- Real t = m_h_inv*(x - m_a) + 1;
- using std::max;
- using std::min;
- using std::ceil;
- using std::floor;
- size_t k_min = static_cast<size_t>((max)(static_cast<long>(0), boost::math::ltrunc(ceil(t - 2))));
- size_t k_max = static_cast<size_t>((min)(static_cast<long>(m_beta.size() - 1), boost::math::ltrunc(floor(t + 2))));
- for (size_t k = k_min; k <= k_max; ++k)
- {
- z += m_beta[k]*b3_spline_double_prime(t - k);
- }
- return z*m_h_inv*m_h_inv;
- }
- }}}
- #endif
|