123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214 |
- /*
- * Copyright Nick Thompson, 2017
- * Use, modification and distribution are subject to the
- * Boost Software License, Version 1.0. (See accompanying file
- * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- */
- #ifndef BOOST_MATH_INTERPOLATORS_BARYCENTRIC_RATIONAL_DETAIL_HPP
- #define BOOST_MATH_INTERPOLATORS_BARYCENTRIC_RATIONAL_DETAIL_HPP
- #include <vector>
- #include <utility> // for std::move
- #include <algorithm> // for std::is_sorted
- #include <string>
- #include <boost/math/special_functions/fpclassify.hpp>
- #include <boost/math/tools/assert.hpp>
- namespace boost{ namespace math{ namespace interpolators { namespace detail{
- template<class Real>
- class barycentric_rational_imp
- {
- public:
- template <class InputIterator1, class InputIterator2>
- barycentric_rational_imp(InputIterator1 start_x, InputIterator1 end_x, InputIterator2 start_y, size_t approximation_order = 3);
- barycentric_rational_imp(std::vector<Real>&& x, std::vector<Real>&& y, size_t approximation_order = 3);
- Real operator()(Real x) const;
- Real prime(Real x) const;
- // The barycentric weights are not really that interesting; except to the unit tests!
- Real weight(size_t i) const { return m_w[i]; }
- std::vector<Real>&& return_x()
- {
- return std::move(m_x);
- }
- std::vector<Real>&& return_y()
- {
- return std::move(m_y);
- }
- private:
- void calculate_weights(size_t approximation_order);
- std::vector<Real> m_x;
- std::vector<Real> m_y;
- std::vector<Real> m_w;
- };
- template <class Real>
- template <class InputIterator1, class InputIterator2>
- barycentric_rational_imp<Real>::barycentric_rational_imp(InputIterator1 start_x, InputIterator1 end_x, InputIterator2 start_y, size_t approximation_order)
- {
- std::ptrdiff_t n = std::distance(start_x, end_x);
- if (approximation_order >= (std::size_t)n)
- {
- throw std::domain_error("Approximation order must be < data length.");
- }
- // Big sad memcpy.
- m_x.resize(n);
- m_y.resize(n);
- for(unsigned i = 0; start_x != end_x; ++start_x, ++start_y, ++i)
- {
- // But if we're going to do a memcpy, we can do some error checking which is inexpensive relative to the copy:
- if(boost::math::isnan(*start_x))
- {
- std::string msg = std::string("x[") + std::to_string(i) + "] is a NAN";
- throw std::domain_error(msg);
- }
- if(boost::math::isnan(*start_y))
- {
- std::string msg = std::string("y[") + std::to_string(i) + "] is a NAN";
- throw std::domain_error(msg);
- }
- m_x[i] = *start_x;
- m_y[i] = *start_y;
- }
- calculate_weights(approximation_order);
- }
- template <class Real>
- barycentric_rational_imp<Real>::barycentric_rational_imp(std::vector<Real>&& x, std::vector<Real>&& y,size_t approximation_order) : m_x(std::move(x)), m_y(std::move(y))
- {
- BOOST_MATH_ASSERT_MSG(m_x.size() == m_y.size(), "There must be the same number of abscissas and ordinates.");
- BOOST_MATH_ASSERT_MSG(approximation_order < m_x.size(), "Approximation order must be < data length.");
- BOOST_MATH_ASSERT_MSG(std::is_sorted(m_x.begin(), m_x.end()), "The abscissas must be listed in increasing order x[0] < x[1] < ... < x[n-1].");
- calculate_weights(approximation_order);
- }
- template<class Real>
- void barycentric_rational_imp<Real>::calculate_weights(size_t approximation_order)
- {
- using std::abs;
- int64_t n = m_x.size();
- m_w.resize(n, 0);
- for(int64_t k = 0; k < n; ++k)
- {
- int64_t i_min = (std::max)(k - static_cast<int64_t>(approximation_order), static_cast<int64_t>(0));
- int64_t i_max = k;
- if (k >= n - (std::ptrdiff_t)approximation_order)
- {
- i_max = n - approximation_order - 1;
- }
- for(int64_t i = i_min; i <= i_max; ++i)
- {
- Real inv_product = 1;
- int64_t j_max = (std::min)(static_cast<int64_t>(i + approximation_order), static_cast<int64_t>(n - 1));
- for(int64_t j = i; j <= j_max; ++j)
- {
- if (j == k)
- {
- continue;
- }
- Real diff = m_x[k] - m_x[j];
- using std::numeric_limits;
- if (abs(diff) < (numeric_limits<Real>::min)())
- {
- std::string msg = std::string("Spacing between x[")
- + std::to_string(k) + std::string("] and x[")
- + std::to_string(i) + std::string("] is ")
- + std::string("smaller than the epsilon of ")
- + std::string(typeid(Real).name());
- throw std::logic_error(msg);
- }
- inv_product *= diff;
- }
- if (i % 2 == 0)
- {
- m_w[k] += 1/inv_product;
- }
- else
- {
- m_w[k] -= 1/inv_product;
- }
- }
- }
- }
- template<class Real>
- Real barycentric_rational_imp<Real>::operator()(Real x) const
- {
- Real numerator = 0;
- Real denominator = 0;
- for(size_t i = 0; i < m_x.size(); ++i)
- {
- // Presumably we should see if the accuracy is improved by using ULP distance of say, 5 here, instead of testing for floating point equality.
- // However, it has been shown that if x approx x_i, but x != x_i, then inaccuracy in the numerator cancels the inaccuracy in the denominator,
- // and the result is fairly accurate. See: http://epubs.siam.org/doi/pdf/10.1137/S0036144502417715
- if (x == m_x[i])
- {
- return m_y[i];
- }
- Real t = m_w[i]/(x - m_x[i]);
- numerator += t*m_y[i];
- denominator += t;
- }
- return numerator/denominator;
- }
- /*
- * A formula for computing the derivative of the barycentric representation is given in
- * "Some New Aspects of Rational Interpolation", by Claus Schneider and Wilhelm Werner,
- * Mathematics of Computation, v47, number 175, 1986.
- * http://www.ams.org/journals/mcom/1986-47-175/S0025-5718-1986-0842136-8/S0025-5718-1986-0842136-8.pdf
- * and reviewed in
- * Recent developments in barycentric rational interpolation
- * Jean-Paul Berrut, Richard Baltensperger and Hans D. Mittelmann
- *
- * Is it possible to complete this in one pass through the data?
- */
- template<class Real>
- Real barycentric_rational_imp<Real>::prime(Real x) const
- {
- Real rx = this->operator()(x);
- Real numerator = 0;
- Real denominator = 0;
- for(size_t i = 0; i < m_x.size(); ++i)
- {
- if (x == m_x[i])
- {
- Real sum = 0;
- for (size_t j = 0; j < m_x.size(); ++j)
- {
- if (j == i)
- {
- continue;
- }
- sum += m_w[j]*(m_y[i] - m_y[j])/(m_x[i] - m_x[j]);
- }
- return -sum/m_w[i];
- }
- Real t = m_w[i]/(x - m_x[i]);
- Real diff = (rx - m_y[i])/(x-m_x[i]);
- numerator += t*diff;
- denominator += t;
- }
- return numerator/denominator;
- }
- }}}}
- #endif
|