1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813 |
- //=======================================================================
- // Copyright (c) Aaron Windsor 2007
- //
- // Distributed under the Boost Software License, Version 1.0. (See
- // accompanying file LICENSE_1_0.txt or copy at
- // http://www.boost.org/LICENSE_1_0.txt)
- //=======================================================================
- #ifndef __BOYER_MYRVOLD_IMPL_HPP__
- #define __BOYER_MYRVOLD_IMPL_HPP__
- #include <vector>
- #include <list>
- #include <boost/next_prior.hpp>
- #include <boost/config.hpp> //for std::min macros
- #include <boost/shared_ptr.hpp>
- #include <boost/tuple/tuple.hpp>
- #include <boost/property_map/property_map.hpp>
- #include <boost/graph/graph_traits.hpp>
- #include <boost/graph/depth_first_search.hpp>
- #include <boost/graph/planar_detail/face_handles.hpp>
- #include <boost/graph/planar_detail/face_iterators.hpp>
- #include <boost/graph/planar_detail/bucket_sort.hpp>
- namespace boost
- {
- namespace detail
- {
- enum bm_case_t
- {
- BM_NO_CASE_CHOSEN,
- BM_CASE_A,
- BM_CASE_B,
- BM_CASE_C,
- BM_CASE_D,
- BM_CASE_E
- };
- }
- template < typename LowPointMap, typename DFSParentMap, typename DFSNumberMap,
- typename LeastAncestorMap, typename DFSParentEdgeMap, typename SizeType >
- struct planar_dfs_visitor : public dfs_visitor<>
- {
- planar_dfs_visitor(LowPointMap lpm, DFSParentMap dfs_p, DFSNumberMap dfs_n,
- LeastAncestorMap lam, DFSParentEdgeMap dfs_edge)
- : low(lpm)
- , parent(dfs_p)
- , df_number(dfs_n)
- , least_ancestor(lam)
- , df_edge(dfs_edge)
- , count(0)
- {
- }
- template < typename Vertex, typename Graph >
- void start_vertex(const Vertex& u, Graph&)
- {
- put(parent, u, u);
- put(least_ancestor, u, count);
- }
- template < typename Vertex, typename Graph >
- void discover_vertex(const Vertex& u, Graph&)
- {
- put(low, u, count);
- put(df_number, u, count);
- ++count;
- }
- template < typename Edge, typename Graph >
- void tree_edge(const Edge& e, Graph& g)
- {
- typedef typename graph_traits< Graph >::vertex_descriptor vertex_t;
- vertex_t s(source(e, g));
- vertex_t t(target(e, g));
- put(parent, t, s);
- put(df_edge, t, e);
- put(least_ancestor, t, get(df_number, s));
- }
- template < typename Edge, typename Graph >
- void back_edge(const Edge& e, Graph& g)
- {
- typedef typename graph_traits< Graph >::vertex_descriptor vertex_t;
- typedef typename graph_traits< Graph >::vertices_size_type v_size_t;
- vertex_t s(source(e, g));
- vertex_t t(target(e, g));
- BOOST_USING_STD_MIN();
- if (t != get(parent, s))
- {
- v_size_t s_low_df_number = get(low, s);
- v_size_t t_df_number = get(df_number, t);
- v_size_t s_least_ancestor_df_number = get(least_ancestor, s);
- put(low, s,
- min BOOST_PREVENT_MACRO_SUBSTITUTION(
- s_low_df_number, t_df_number));
- put(least_ancestor, s,
- min BOOST_PREVENT_MACRO_SUBSTITUTION(
- s_least_ancestor_df_number, t_df_number));
- }
- }
- template < typename Vertex, typename Graph >
- void finish_vertex(const Vertex& u, Graph&)
- {
- typedef typename graph_traits< Graph >::vertices_size_type v_size_t;
- Vertex u_parent = get(parent, u);
- v_size_t u_parent_lowpoint = get(low, u_parent);
- v_size_t u_lowpoint = get(low, u);
- BOOST_USING_STD_MIN();
- if (u_parent != u)
- {
- put(low, u_parent,
- min BOOST_PREVENT_MACRO_SUBSTITUTION(
- u_lowpoint, u_parent_lowpoint));
- }
- }
- LowPointMap low;
- DFSParentMap parent;
- DFSNumberMap df_number;
- LeastAncestorMap least_ancestor;
- DFSParentEdgeMap df_edge;
- SizeType count;
- };
- template < typename Graph, typename VertexIndexMap,
- typename StoreOldHandlesPolicy = graph::detail::store_old_handles,
- typename StoreEmbeddingPolicy = graph::detail::recursive_lazy_list >
- class boyer_myrvold_impl
- {
- typedef typename graph_traits< Graph >::vertices_size_type v_size_t;
- typedef typename graph_traits< Graph >::vertex_descriptor vertex_t;
- typedef typename graph_traits< Graph >::edge_descriptor edge_t;
- typedef typename graph_traits< Graph >::vertex_iterator vertex_iterator_t;
- typedef typename graph_traits< Graph >::edge_iterator edge_iterator_t;
- typedef
- typename graph_traits< Graph >::out_edge_iterator out_edge_iterator_t;
- typedef graph::detail::face_handle< Graph, StoreOldHandlesPolicy,
- StoreEmbeddingPolicy >
- face_handle_t;
- typedef std::vector< vertex_t > vertex_vector_t;
- typedef std::vector< edge_t > edge_vector_t;
- typedef std::list< vertex_t > vertex_list_t;
- typedef std::list< face_handle_t > face_handle_list_t;
- typedef boost::shared_ptr< face_handle_list_t > face_handle_list_ptr_t;
- typedef boost::shared_ptr< vertex_list_t > vertex_list_ptr_t;
- typedef boost::tuple< vertex_t, bool, bool > merge_stack_frame_t;
- typedef std::vector< merge_stack_frame_t > merge_stack_t;
- template < typename T > struct map_vertex_to_
- {
- typedef iterator_property_map< typename std::vector< T >::iterator,
- VertexIndexMap >
- type;
- };
- typedef typename map_vertex_to_< v_size_t >::type vertex_to_v_size_map_t;
- typedef typename map_vertex_to_< vertex_t >::type vertex_to_vertex_map_t;
- typedef typename map_vertex_to_< edge_t >::type vertex_to_edge_map_t;
- typedef typename map_vertex_to_< vertex_list_ptr_t >::type
- vertex_to_vertex_list_ptr_map_t;
- typedef typename map_vertex_to_< edge_vector_t >::type
- vertex_to_edge_vector_map_t;
- typedef typename map_vertex_to_< bool >::type vertex_to_bool_map_t;
- typedef typename map_vertex_to_< face_handle_t >::type
- vertex_to_face_handle_map_t;
- typedef typename map_vertex_to_< face_handle_list_ptr_t >::type
- vertex_to_face_handle_list_ptr_map_t;
- typedef typename map_vertex_to_< typename vertex_list_t::iterator >::type
- vertex_to_separated_node_map_t;
- template < typename BicompSideToTraverse = single_side,
- typename VisitorType = lead_visitor, typename Time = current_iteration >
- struct face_vertex_iterator
- {
- typedef face_iterator< Graph, vertex_to_face_handle_map_t, vertex_t,
- BicompSideToTraverse, VisitorType, Time >
- type;
- };
- template < typename BicompSideToTraverse = single_side,
- typename Time = current_iteration >
- struct face_edge_iterator
- {
- typedef face_iterator< Graph, vertex_to_face_handle_map_t, edge_t,
- BicompSideToTraverse, lead_visitor, Time >
- type;
- };
- public:
- boyer_myrvold_impl(const Graph& arg_g, VertexIndexMap arg_vm)
- : g(arg_g)
- , vm(arg_vm)
- ,
- low_point_vector(num_vertices(g))
- , dfs_parent_vector(num_vertices(g))
- , dfs_number_vector(num_vertices(g))
- , least_ancestor_vector(num_vertices(g))
- , pertinent_roots_vector(num_vertices(g))
- , backedge_flag_vector(num_vertices(g), num_vertices(g) + 1)
- , visited_vector(num_vertices(g), num_vertices(g) + 1)
- , face_handles_vector(num_vertices(g))
- , dfs_child_handles_vector(num_vertices(g))
- , separated_dfs_child_list_vector(num_vertices(g))
- , separated_node_in_parent_list_vector(num_vertices(g))
- , canonical_dfs_child_vector(num_vertices(g))
- , flipped_vector(num_vertices(g), false)
- , backedges_vector(num_vertices(g))
- , dfs_parent_edge_vector(num_vertices(g))
- ,
- vertices_by_dfs_num(num_vertices(g))
- ,
- low_point(low_point_vector.begin(), vm)
- , dfs_parent(dfs_parent_vector.begin(), vm)
- , dfs_number(dfs_number_vector.begin(), vm)
- , least_ancestor(least_ancestor_vector.begin(), vm)
- , pertinent_roots(pertinent_roots_vector.begin(), vm)
- , backedge_flag(backedge_flag_vector.begin(), vm)
- , visited(visited_vector.begin(), vm)
- , face_handles(face_handles_vector.begin(), vm)
- , dfs_child_handles(dfs_child_handles_vector.begin(), vm)
- , separated_dfs_child_list(separated_dfs_child_list_vector.begin(), vm)
- , separated_node_in_parent_list(
- separated_node_in_parent_list_vector.begin(), vm)
- , canonical_dfs_child(canonical_dfs_child_vector.begin(), vm)
- , flipped(flipped_vector.begin(), vm)
- , backedges(backedges_vector.begin(), vm)
- , dfs_parent_edge(dfs_parent_edge_vector.begin(), vm)
- {
- planar_dfs_visitor< vertex_to_v_size_map_t, vertex_to_vertex_map_t,
- vertex_to_v_size_map_t, vertex_to_v_size_map_t,
- vertex_to_edge_map_t, v_size_t >
- vis(low_point, dfs_parent, dfs_number, least_ancestor,
- dfs_parent_edge);
- // Perform a depth-first search to find each vertex's low point, least
- // ancestor, and dfs tree information
- depth_first_search(g, visitor(vis).vertex_index_map(vm));
- // Sort vertices by their lowpoint - need this later in the constructor
- vertex_vector_t vertices_by_lowpoint(num_vertices(g));
- std::copy(vertices(g).first, vertices(g).second,
- vertices_by_lowpoint.begin());
- bucket_sort(vertices_by_lowpoint.begin(), vertices_by_lowpoint.end(),
- low_point, num_vertices(g));
- // Sort vertices by their dfs number - need this to iterate by reverse
- // DFS number in the main loop.
- std::copy(
- vertices(g).first, vertices(g).second, vertices_by_dfs_num.begin());
- bucket_sort(vertices_by_dfs_num.begin(), vertices_by_dfs_num.end(),
- dfs_number, num_vertices(g));
- // Initialize face handles. A face handle is an abstraction that serves
- // two uses in our implementation - it allows us to efficiently move
- // along the outer face of embedded bicomps in a partially embedded
- // graph, and it provides storage for the planar embedding. Face
- // handles are implemented by a sequence of edges and are associated
- // with a particular vertex - the sequence of edges represents the
- // current embedding of edges around that vertex, and the first and
- // last edges in the sequence represent the pair of edges on the outer
- // face that are adjacent to the associated vertex. This lets us embed
- // edges in the graph by just pushing them on the front or back of the
- // sequence of edges held by the face handles.
- //
- // Our algorithm starts with a DFS tree of edges (where every vertex is
- // an articulation point and every edge is a singleton bicomp) and
- // repeatedly merges bicomps by embedding additional edges. Note that
- // any bicomp at any point in the algorithm can be associated with a
- // unique edge connecting the vertex of that bicomp with the lowest DFS
- // number (which we refer to as the "root" of the bicomp) with its DFS
- // child in the bicomp: the existence of two such edges would contradict
- // the properties of a DFS tree. We refer to the DFS child of the root
- // of a bicomp as the "canonical DFS child" of the bicomp. Note that a
- // vertex can be the root of more than one bicomp.
- //
- // We move around the external faces of a bicomp using a few property
- // maps, which we'll initialize presently:
- //
- // - face_handles: maps a vertex to a face handle that can be used to
- // move "up" a bicomp. For a vertex that isn't an articulation point,
- // this holds the face handles that can be used to move around that
- // vertex's unique bicomp. For a vertex that is an articulation point,
- // this holds the face handles associated with the unique bicomp that
- // the vertex is NOT the root of. These handles can therefore be used
- // to move from any point on the outer face of the tree of bicomps
- // around the current outer face towards the root of the DFS tree.
- //
- // - dfs_child_handles: these are used to hold face handles for
- // vertices that are articulation points - dfs_child_handles[v] holds
- // the face handles corresponding to vertex u in the bicomp with root
- // u and canonical DFS child v.
- //
- // - canonical_dfs_child: this property map allows one to determine the
- // canonical DFS child of a bicomp while traversing the outer face.
- // This property map is only valid when applied to one of the two
- // vertices adjacent to the root of the bicomp on the outer face. To
- // be more precise, if v is the canonical DFS child of a bicomp,
- // canonical_dfs_child[dfs_child_handles[v].first_vertex()] == v and
- // canonical_dfs_child[dfs_child_handles[v].second_vertex()] == v.
- //
- // - pertinent_roots: given a vertex v, pertinent_roots[v] contains a
- // list of face handles pointing to the top of bicomps that need to
- // be visited by the current walkdown traversal (since they lead to
- // backedges that need to be embedded). These lists are populated by
- // the walkup and consumed by the walkdown.
- vertex_iterator_t vi, vi_end;
- for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
- {
- vertex_t v(*vi);
- vertex_t parent = dfs_parent[v];
- if (parent != v)
- {
- edge_t parent_edge = dfs_parent_edge[v];
- add_to_embedded_edges(parent_edge, StoreOldHandlesPolicy());
- face_handles[v] = face_handle_t(v, parent_edge, g);
- dfs_child_handles[v] = face_handle_t(parent, parent_edge, g);
- }
- else
- {
- face_handles[v] = face_handle_t(v);
- dfs_child_handles[v] = face_handle_t(parent);
- }
- canonical_dfs_child[v] = v;
- pertinent_roots[v] = face_handle_list_ptr_t(new face_handle_list_t);
- separated_dfs_child_list[v] = vertex_list_ptr_t(new vertex_list_t);
- }
- // We need to create a list of not-yet-merged depth-first children for
- // each vertex that will be updated as bicomps get merged. We sort each
- // list by ascending lowpoint, which allows the externally_active
- // function to run in constant time, and we keep a pointer to each
- // vertex's representation in its parent's list, which allows merging
- // in constant time.
- for (typename vertex_vector_t::iterator itr
- = vertices_by_lowpoint.begin();
- itr != vertices_by_lowpoint.end(); ++itr)
- {
- vertex_t v(*itr);
- vertex_t parent(dfs_parent[v]);
- if (v != parent)
- {
- separated_node_in_parent_list[v]
- = separated_dfs_child_list[parent]->insert(
- separated_dfs_child_list[parent]->end(), v);
- }
- }
- // The merge stack holds path information during a walkdown iteration
- merge_stack.reserve(num_vertices(g));
- }
- bool is_planar()
- {
- // This is the main algorithm: starting with a DFS tree of embedded
- // edges (which, since it's a tree, is planar), iterate through all
- // vertices by reverse DFS number, attempting to embed all backedges
- // connecting the current vertex to vertices with higher DFS numbers.
- //
- // The walkup is a procedure that examines all such backedges and sets
- // up the required data structures so that they can be searched by the
- // walkdown in linear time. The walkdown does the actual work of
- // embedding edges and flipping bicomps, and can identify when it has
- // come across a kuratowski subgraph.
- //
- // store_old_face_handles caches face handles from the previous
- // iteration - this is used only for the kuratowski subgraph isolation,
- // and is therefore dispatched based on the StoreOldHandlesPolicy.
- //
- // clean_up_embedding does some clean-up and fills in values that have
- // to be computed lazily during the actual execution of the algorithm
- // (for instance, whether or not a bicomp is flipped in the final
- // embedding). It's dispatched on the the StoreEmbeddingPolicy, since
- // it's not needed if an embedding isn't desired.
- typename vertex_vector_t::reverse_iterator vi, vi_end;
- vi_end = vertices_by_dfs_num.rend();
- for (vi = vertices_by_dfs_num.rbegin(); vi != vi_end; ++vi)
- {
- store_old_face_handles(StoreOldHandlesPolicy());
- vertex_t v(*vi);
- walkup(v);
- if (!walkdown(v))
- return false;
- }
- clean_up_embedding(StoreEmbeddingPolicy());
- return true;
- }
- private:
- void walkup(vertex_t v)
- {
- // The point of the walkup is to follow all backedges from v to
- // vertices with higher DFS numbers, and update pertinent_roots
- // for the bicomp roots on the path from backedge endpoints up
- // to v. This will set the stage for the walkdown to efficiently
- // traverse the graph of bicomps down from v.
- typedef
- typename face_vertex_iterator< both_sides >::type walkup_iterator_t;
- out_edge_iterator_t oi, oi_end;
- for (boost::tie(oi, oi_end) = out_edges(v, g); oi != oi_end; ++oi)
- {
- edge_t e(*oi);
- vertex_t e_source(source(e, g));
- vertex_t e_target(target(e, g));
- if (e_source == e_target)
- {
- self_loops.push_back(e);
- continue;
- }
- vertex_t w(e_source == v ? e_target : e_source);
- // continue if not a back edge or already embedded
- if (dfs_number[w] < dfs_number[v] || e == dfs_parent_edge[w])
- continue;
- backedges[w].push_back(e);
- v_size_t timestamp = dfs_number[v];
- backedge_flag[w] = timestamp;
- walkup_iterator_t walkup_itr(w, face_handles);
- walkup_iterator_t walkup_end;
- vertex_t lead_vertex = w;
- while (true)
- {
- // Move to the root of the current bicomp or the first visited
- // vertex on the bicomp by going up each side in parallel
- while (walkup_itr != walkup_end
- && visited[*walkup_itr] != timestamp)
- {
- lead_vertex = *walkup_itr;
- visited[lead_vertex] = timestamp;
- ++walkup_itr;
- }
- // If we've found the root of a bicomp through a path we haven't
- // seen before, update pertinent_roots with a handle to the
- // current bicomp. Otherwise, we've just seen a path we've been
- // up before, so break out of the main while loop.
- if (walkup_itr == walkup_end)
- {
- vertex_t dfs_child = canonical_dfs_child[lead_vertex];
- vertex_t parent = dfs_parent[dfs_child];
- visited[dfs_child_handles[dfs_child].first_vertex()]
- = timestamp;
- visited[dfs_child_handles[dfs_child].second_vertex()]
- = timestamp;
- if (low_point[dfs_child] < dfs_number[v]
- || least_ancestor[dfs_child] < dfs_number[v])
- {
- pertinent_roots[parent]->push_back(
- dfs_child_handles[dfs_child]);
- }
- else
- {
- pertinent_roots[parent]->push_front(
- dfs_child_handles[dfs_child]);
- }
- if (parent != v && visited[parent] != timestamp)
- {
- walkup_itr = walkup_iterator_t(parent, face_handles);
- lead_vertex = parent;
- }
- else
- break;
- }
- else
- break;
- }
- }
- }
- bool walkdown(vertex_t v)
- {
- // This procedure is where all of the action is - pertinent_roots
- // has already been set up by the walkup, so we just need to move
- // down bicomps from v until we find vertices that have been
- // labeled as backedge endpoints. Once we find such a vertex, we
- // embed the corresponding edge and glue together the bicomps on
- // the path connecting the two vertices in the edge. This may
- // involve flipping bicomps along the way.
- vertex_t w; // the other endpoint of the edge we're embedding
- while (!pertinent_roots[v]->empty())
- {
- face_handle_t root_face_handle = pertinent_roots[v]->front();
- face_handle_t curr_face_handle = root_face_handle;
- pertinent_roots[v]->pop_front();
- merge_stack.clear();
- while (true)
- {
- typename face_vertex_iterator<>::type first_face_itr,
- second_face_itr, face_end;
- vertex_t first_side_vertex
- = graph_traits< Graph >::null_vertex();
- vertex_t second_side_vertex
- = graph_traits< Graph >::null_vertex();
- vertex_t first_tail, second_tail;
- first_tail = second_tail = curr_face_handle.get_anchor();
- first_face_itr = typename face_vertex_iterator<>::type(
- curr_face_handle, face_handles, first_side());
- second_face_itr = typename face_vertex_iterator<>::type(
- curr_face_handle, face_handles, second_side());
- for (; first_face_itr != face_end; ++first_face_itr)
- {
- vertex_t face_vertex(*first_face_itr);
- if (pertinent(face_vertex, v)
- || externally_active(face_vertex, v))
- {
- first_side_vertex = face_vertex;
- second_side_vertex = face_vertex;
- break;
- }
- first_tail = face_vertex;
- }
- if (first_side_vertex == graph_traits< Graph >::null_vertex()
- || first_side_vertex == curr_face_handle.get_anchor())
- break;
- for (; second_face_itr != face_end; ++second_face_itr)
- {
- vertex_t face_vertex(*second_face_itr);
- if (pertinent(face_vertex, v)
- || externally_active(face_vertex, v))
- {
- second_side_vertex = face_vertex;
- break;
- }
- second_tail = face_vertex;
- }
- vertex_t chosen;
- bool chose_first_upper_path;
- if (internally_active(first_side_vertex, v))
- {
- chosen = first_side_vertex;
- chose_first_upper_path = true;
- }
- else if (internally_active(second_side_vertex, v))
- {
- chosen = second_side_vertex;
- chose_first_upper_path = false;
- }
- else if (pertinent(first_side_vertex, v))
- {
- chosen = first_side_vertex;
- chose_first_upper_path = true;
- }
- else if (pertinent(second_side_vertex, v))
- {
- chosen = second_side_vertex;
- chose_first_upper_path = false;
- }
- else
- {
- // If there's a pertinent vertex on the lower face
- // between the first_face_itr and the second_face_itr,
- // this graph isn't planar.
- for (; *first_face_itr != second_side_vertex;
- ++first_face_itr)
- {
- vertex_t p(*first_face_itr);
- if (pertinent(p, v))
- {
- // Found a Kuratowski subgraph
- kuratowski_v = v;
- kuratowski_x = first_side_vertex;
- kuratowski_y = second_side_vertex;
- return false;
- }
- }
- // Otherwise, the fact that we didn't find a pertinent
- // vertex on this face is fine - we should set the
- // short-circuit edges and break out of this loop to
- // start looking at a different pertinent root.
- if (first_side_vertex == second_side_vertex)
- {
- if (first_tail != v)
- {
- vertex_t first
- = face_handles[first_tail].first_vertex();
- vertex_t second
- = face_handles[first_tail].second_vertex();
- boost::tie(first_side_vertex, first_tail)
- = make_tuple(first_tail,
- first == first_side_vertex ? second
- : first);
- }
- else if (second_tail != v)
- {
- vertex_t first
- = face_handles[second_tail].first_vertex();
- vertex_t second
- = face_handles[second_tail].second_vertex();
- boost::tie(second_side_vertex, second_tail)
- = make_tuple(second_tail,
- first == second_side_vertex ? second
- : first);
- }
- else
- break;
- }
- canonical_dfs_child[first_side_vertex]
- = canonical_dfs_child[root_face_handle.first_vertex()];
- canonical_dfs_child[second_side_vertex]
- = canonical_dfs_child[root_face_handle.second_vertex()];
- root_face_handle.set_first_vertex(first_side_vertex);
- root_face_handle.set_second_vertex(second_side_vertex);
- if (face_handles[first_side_vertex].first_vertex()
- == first_tail)
- face_handles[first_side_vertex].set_first_vertex(v);
- else
- face_handles[first_side_vertex].set_second_vertex(v);
- if (face_handles[second_side_vertex].first_vertex()
- == second_tail)
- face_handles[second_side_vertex].set_first_vertex(v);
- else
- face_handles[second_side_vertex].set_second_vertex(v);
- break;
- }
- // When we unwind the stack, we need to know which direction
- // we came down from on the top face handle
- bool chose_first_lower_path
- = (chose_first_upper_path
- && face_handles[chosen].first_vertex() == first_tail)
- || (!chose_first_upper_path
- && face_handles[chosen].first_vertex() == second_tail);
- // If there's a backedge at the chosen vertex, embed it now
- if (backedge_flag[chosen] == dfs_number[v])
- {
- w = chosen;
- backedge_flag[chosen] = num_vertices(g) + 1;
- add_to_merge_points(chosen, StoreOldHandlesPolicy());
- typename edge_vector_t::iterator ei, ei_end;
- ei_end = backedges[chosen].end();
- for (ei = backedges[chosen].begin(); ei != ei_end; ++ei)
- {
- edge_t e(*ei);
- add_to_embedded_edges(e, StoreOldHandlesPolicy());
- if (chose_first_lower_path)
- face_handles[chosen].push_first(e, g);
- else
- face_handles[chosen].push_second(e, g);
- }
- }
- else
- {
- merge_stack.push_back(make_tuple(chosen,
- chose_first_upper_path, chose_first_lower_path));
- curr_face_handle = *pertinent_roots[chosen]->begin();
- continue;
- }
- // Unwind the merge stack to the root, merging all bicomps
- bool bottom_path_follows_first;
- bool top_path_follows_first;
- bool next_bottom_follows_first = chose_first_upper_path;
- vertex_t merge_point = chosen;
- while (!merge_stack.empty())
- {
- bottom_path_follows_first = next_bottom_follows_first;
- boost::tie(merge_point, next_bottom_follows_first,
- top_path_follows_first)
- = merge_stack.back();
- merge_stack.pop_back();
- face_handle_t top_handle(face_handles[merge_point]);
- face_handle_t bottom_handle(
- *pertinent_roots[merge_point]->begin());
- vertex_t bottom_dfs_child = canonical_dfs_child
- [pertinent_roots[merge_point]->begin()->first_vertex()];
- remove_vertex_from_separated_dfs_child_list(
- canonical_dfs_child[pertinent_roots[merge_point]
- ->begin()
- ->first_vertex()]);
- pertinent_roots[merge_point]->pop_front();
- add_to_merge_points(
- top_handle.get_anchor(), StoreOldHandlesPolicy());
- if (top_path_follows_first && bottom_path_follows_first)
- {
- bottom_handle.flip();
- top_handle.glue_first_to_second(bottom_handle);
- }
- else if (!top_path_follows_first
- && bottom_path_follows_first)
- {
- flipped[bottom_dfs_child] = true;
- top_handle.glue_second_to_first(bottom_handle);
- }
- else if (top_path_follows_first
- && !bottom_path_follows_first)
- {
- flipped[bottom_dfs_child] = true;
- top_handle.glue_first_to_second(bottom_handle);
- }
- else //! top_path_follows_first &&
- //! !bottom_path_follows_first
- {
- bottom_handle.flip();
- top_handle.glue_second_to_first(bottom_handle);
- }
- }
- // Finally, embed all edges (v,w) at their upper end points
- canonical_dfs_child[w]
- = canonical_dfs_child[root_face_handle.first_vertex()];
- add_to_merge_points(
- root_face_handle.get_anchor(), StoreOldHandlesPolicy());
- typename edge_vector_t::iterator ei, ei_end;
- ei_end = backedges[chosen].end();
- for (ei = backedges[chosen].begin(); ei != ei_end; ++ei)
- {
- if (next_bottom_follows_first)
- root_face_handle.push_first(*ei, g);
- else
- root_face_handle.push_second(*ei, g);
- }
- backedges[chosen].clear();
- curr_face_handle = root_face_handle;
- } // while(true)
- } // while(!pertinent_roots[v]->empty())
- return true;
- }
- void store_old_face_handles(graph::detail::no_old_handles) {}
- void store_old_face_handles(graph::detail::store_old_handles)
- {
- for (typename std::vector< vertex_t >::iterator mp_itr
- = current_merge_points.begin();
- mp_itr != current_merge_points.end(); ++mp_itr)
- {
- face_handles[*mp_itr].store_old_face_handles();
- }
- current_merge_points.clear();
- }
- void add_to_merge_points(vertex_t, graph::detail::no_old_handles) {}
- void add_to_merge_points(vertex_t v, graph::detail::store_old_handles)
- {
- current_merge_points.push_back(v);
- }
- void add_to_embedded_edges(edge_t, graph::detail::no_old_handles) {}
- void add_to_embedded_edges(edge_t e, graph::detail::store_old_handles)
- {
- embedded_edges.push_back(e);
- }
- void clean_up_embedding(graph::detail::no_embedding) {}
- void clean_up_embedding(graph::detail::store_embedding)
- {
- // If the graph isn't biconnected, we'll still have entries
- // in the separated_dfs_child_list for some vertices. Since
- // these represent articulation points, we can obtain a
- // planar embedding no matter what order we embed them in.
- vertex_iterator_t xi, xi_end;
- for (boost::tie(xi, xi_end) = vertices(g); xi != xi_end; ++xi)
- {
- if (!separated_dfs_child_list[*xi]->empty())
- {
- typename vertex_list_t::iterator yi, yi_end;
- yi_end = separated_dfs_child_list[*xi]->end();
- for (yi = separated_dfs_child_list[*xi]->begin(); yi != yi_end;
- ++yi)
- {
- dfs_child_handles[*yi].flip();
- face_handles[*xi].glue_first_to_second(
- dfs_child_handles[*yi]);
- }
- }
- }
- // Up until this point, we've flipped bicomps lazily by setting
- // flipped[v] to true if the bicomp rooted at v was flipped (the
- // lazy aspect of this flip is that all descendents of that vertex
- // need to have their orientations reversed as well). Now, we
- // traverse the DFS tree by DFS number and perform the actual
- // flipping as needed
- typedef typename vertex_vector_t::iterator vertex_vector_itr_t;
- vertex_vector_itr_t vi_end = vertices_by_dfs_num.end();
- for (vertex_vector_itr_t vi = vertices_by_dfs_num.begin(); vi != vi_end;
- ++vi)
- {
- vertex_t v(*vi);
- bool v_flipped = flipped[v];
- bool p_flipped = flipped[dfs_parent[v]];
- if (v_flipped && !p_flipped)
- {
- face_handles[v].flip();
- }
- else if (p_flipped && !v_flipped)
- {
- face_handles[v].flip();
- flipped[v] = true;
- }
- else
- {
- flipped[v] = false;
- }
- }
- // If there are any self-loops in the graph, they were flagged
- // during the walkup, and we should add them to the embedding now.
- // Adding a self loop anywhere in the embedding could never
- // invalidate the embedding, but they would complicate the traversal
- // if they were added during the walkup/walkdown.
- typename edge_vector_t::iterator ei, ei_end;
- ei_end = self_loops.end();
- for (ei = self_loops.begin(); ei != ei_end; ++ei)
- {
- edge_t e(*ei);
- face_handles[source(e, g)].push_second(e, g);
- }
- }
- bool pertinent(vertex_t w, vertex_t v)
- {
- // w is pertinent with respect to v if there is a backedge (v,w) or if
- // w is the root of a bicomp that contains a pertinent vertex.
- return backedge_flag[w] == dfs_number[v]
- || !pertinent_roots[w]->empty();
- }
- bool externally_active(vertex_t w, vertex_t v)
- {
- // Let a be any proper depth-first search ancestor of v. w is externally
- // active with respect to v if there exists a backedge (a,w) or a
- // backedge (a,w_0) for some w_0 in a descendent bicomp of w.
- v_size_t dfs_number_of_v = dfs_number[v];
- return (least_ancestor[w] < dfs_number_of_v)
- || (!separated_dfs_child_list[w]->empty()
- && low_point[separated_dfs_child_list[w]->front()]
- < dfs_number_of_v);
- }
- bool internally_active(vertex_t w, vertex_t v)
- {
- return pertinent(w, v) && !externally_active(w, v);
- }
- void remove_vertex_from_separated_dfs_child_list(vertex_t v)
- {
- typename vertex_list_t::iterator to_delete
- = separated_node_in_parent_list[v];
- garbage.splice(garbage.end(), *separated_dfs_child_list[dfs_parent[v]],
- to_delete, boost::next(to_delete));
- }
- // End of the implementation of the basic Boyer-Myrvold Algorithm. The rest
- // of the code below implements the isolation of a Kuratowski subgraph in
- // the case that the input graph is not planar. This is by far the most
- // complicated part of the implementation.
- public:
- template < typename EdgeToBoolPropertyMap, typename EdgeContainer >
- vertex_t kuratowski_walkup(vertex_t v, EdgeToBoolPropertyMap forbidden_edge,
- EdgeToBoolPropertyMap goal_edge, EdgeToBoolPropertyMap is_embedded,
- EdgeContainer& path_edges)
- {
- vertex_t current_endpoint;
- bool seen_goal_edge = false;
- out_edge_iterator_t oi, oi_end;
- for (boost::tie(oi, oi_end) = out_edges(v, g); oi != oi_end; ++oi)
- forbidden_edge[*oi] = true;
- for (boost::tie(oi, oi_end) = out_edges(v, g); oi != oi_end; ++oi)
- {
- path_edges.clear();
- edge_t e(*oi);
- current_endpoint
- = target(*oi, g) == v ? source(*oi, g) : target(*oi, g);
- if (dfs_number[current_endpoint] < dfs_number[v] || is_embedded[e]
- || v == current_endpoint // self-loop
- )
- {
- // Not a backedge
- continue;
- }
- path_edges.push_back(e);
- if (goal_edge[e])
- {
- return current_endpoint;
- }
- typedef typename face_edge_iterator<>::type walkup_itr_t;
- walkup_itr_t walkup_itr(
- current_endpoint, face_handles, first_side());
- walkup_itr_t walkup_end;
- seen_goal_edge = false;
- while (true)
- {
- if (walkup_itr != walkup_end && forbidden_edge[*walkup_itr])
- break;
- while (walkup_itr != walkup_end && !goal_edge[*walkup_itr]
- && !forbidden_edge[*walkup_itr])
- {
- edge_t f(*walkup_itr);
- forbidden_edge[f] = true;
- path_edges.push_back(f);
- current_endpoint = source(f, g) == current_endpoint
- ? target(f, g)
- : source(f, g);
- ++walkup_itr;
- }
- if (walkup_itr != walkup_end && goal_edge[*walkup_itr])
- {
- path_edges.push_back(*walkup_itr);
- seen_goal_edge = true;
- break;
- }
- walkup_itr = walkup_itr_t(
- current_endpoint, face_handles, first_side());
- }
- if (seen_goal_edge)
- break;
- }
- if (seen_goal_edge)
- return current_endpoint;
- else
- return graph_traits< Graph >::null_vertex();
- }
- template < typename OutputIterator, typename EdgeIndexMap >
- void extract_kuratowski_subgraph(OutputIterator o_itr, EdgeIndexMap em)
- {
- // If the main algorithm has failed to embed one of the back-edges from
- // a vertex v, we can use the current state of the algorithm to isolate
- // a Kuratowksi subgraph. The isolation process breaks down into five
- // cases, A - E. The general configuration of all five cases is shown in
- // figure 1. There is a vertex v from which the planar
- // v embedding process could not proceed. This means that
- // | there exists some bicomp containing three vertices
- // ----- x,y, and z as shown such that x and y are externally
- // | | active with respect to v (which means that there are
- // x y two vertices x_0 and y_0 such that (1) both x_0 and
- // | | y_0 are proper depth-first search ancestors of v and
- // --z-- (2) there are two disjoint paths, one connecting x
- // and x_0 and one connecting y and y_0, both
- // consisting
- // fig. 1 entirely of unembedded edges). Furthermore, there
- // exists a vertex z_0 such that z is a depth-first
- // search ancestor of z_0 and (v,z_0) is an unembedded back-edge from v.
- // x,y and z all exist on the same bicomp, which consists entirely of
- // embedded edges. The five subcases break down as follows, and are
- // handled by the algorithm logically in the order A-E: First, if v is
- // not on the same bicomp as x,y, and z, a K_3_3 can be isolated - this
- // is case A. So, we'll assume that v is on the same bicomp as x,y, and
- // z. If z_0 is on a different bicomp than x,y, and z, a K_3_3 can also
- // be isolated - this is a case B - so we'll assume from now on that v
- // is on the same bicomp as x, y, and z=z_0. In this case, one can use
- // properties of the Boyer-Myrvold algorithm to show the existence of an
- // "x-y path" connecting some vertex on the "left side" of the x,y,z
- // bicomp with some vertex on the "right side" of the bicomp (where the
- // left and right are split by a line drawn through v and z.If either of
- // the endpoints of the x-y path is above x or y on the bicomp, a K_3_3
- // can be isolated - this is a case C. Otherwise, both endpoints are at
- // or below x and y on the bicomp. If there is a vertex alpha on the x-y
- // path such that alpha is not x or y and there's a path from alpha to v
- // that's disjoint from any of the edges on the bicomp and the x-y path,
- // a K_3_3 can be isolated - this is a case D. Otherwise, properties of
- // the Boyer-Myrvold algorithm can be used to show that another vertex
- // w exists on the lower half of the bicomp such that w is externally
- // active with respect to v. w can then be used to isolate a K_5 - this
- // is the configuration of case E.
- vertex_iterator_t vi, vi_end;
- edge_iterator_t ei, ei_end;
- out_edge_iterator_t oei, oei_end;
- typename std::vector< edge_t >::iterator xi, xi_end;
- // Clear the short-circuit edges - these are needed for the planar
- // testing/embedding algorithm to run in linear time, but they'll
- // complicate the kuratowski subgraph isolation
- for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
- {
- face_handles[*vi].reset_vertex_cache();
- dfs_child_handles[*vi].reset_vertex_cache();
- }
- vertex_t v = kuratowski_v;
- vertex_t x = kuratowski_x;
- vertex_t y = kuratowski_y;
- typedef iterator_property_map< typename std::vector< bool >::iterator,
- EdgeIndexMap >
- edge_to_bool_map_t;
- std::vector< bool > is_in_subgraph_vector(num_edges(g), false);
- edge_to_bool_map_t is_in_subgraph(is_in_subgraph_vector.begin(), em);
- std::vector< bool > is_embedded_vector(num_edges(g), false);
- edge_to_bool_map_t is_embedded(is_embedded_vector.begin(), em);
- typename std::vector< edge_t >::iterator embedded_itr, embedded_end;
- embedded_end = embedded_edges.end();
- for (embedded_itr = embedded_edges.begin();
- embedded_itr != embedded_end; ++embedded_itr)
- is_embedded[*embedded_itr] = true;
- // upper_face_vertex is true for x,y, and all vertices above x and y in
- // the bicomp
- std::vector< bool > upper_face_vertex_vector(num_vertices(g), false);
- vertex_to_bool_map_t upper_face_vertex(
- upper_face_vertex_vector.begin(), vm);
- std::vector< bool > lower_face_vertex_vector(num_vertices(g), false);
- vertex_to_bool_map_t lower_face_vertex(
- lower_face_vertex_vector.begin(), vm);
- // These next few variable declarations are all things that we need
- // to find.
- vertex_t z = graph_traits< Graph >::null_vertex();
- vertex_t bicomp_root;
- vertex_t w = graph_traits< Graph >::null_vertex();
- face_handle_t w_handle;
- face_handle_t v_dfchild_handle;
- vertex_t first_x_y_path_endpoint = graph_traits< Graph >::null_vertex();
- vertex_t second_x_y_path_endpoint
- = graph_traits< Graph >::null_vertex();
- vertex_t w_ancestor = v;
- detail::bm_case_t chosen_case = detail::BM_NO_CASE_CHOSEN;
- std::vector< edge_t > x_external_path;
- std::vector< edge_t > y_external_path;
- std::vector< edge_t > case_d_edges;
- std::vector< edge_t > z_v_path;
- std::vector< edge_t > w_path;
- // first, use a walkup to find a path from V that starts with a
- // backedge from V, then goes up until it hits either X or Y
- //(but doesn't find X or Y as the root of a bicomp)
- typename face_vertex_iterator<>::type x_upper_itr(
- x, face_handles, first_side());
- typename face_vertex_iterator<>::type x_lower_itr(
- x, face_handles, second_side());
- typename face_vertex_iterator<>::type face_itr, face_end;
- // Don't know which path from x is the upper or lower path -
- // we'll find out here
- for (face_itr = x_upper_itr; face_itr != face_end; ++face_itr)
- {
- if (*face_itr == y)
- {
- std::swap(x_upper_itr, x_lower_itr);
- break;
- }
- }
- upper_face_vertex[x] = true;
- vertex_t current_vertex = x;
- vertex_t previous_vertex;
- for (face_itr = x_upper_itr; face_itr != face_end; ++face_itr)
- {
- previous_vertex = current_vertex;
- current_vertex = *face_itr;
- upper_face_vertex[current_vertex] = true;
- }
- v_dfchild_handle
- = dfs_child_handles[canonical_dfs_child[previous_vertex]];
- for (face_itr = x_lower_itr; *face_itr != y; ++face_itr)
- {
- vertex_t current_vertex(*face_itr);
- lower_face_vertex[current_vertex] = true;
- typename face_handle_list_t::iterator roots_itr, roots_end;
- if (w == graph_traits< Graph >::null_vertex()) // haven't found a w
- // yet
- {
- roots_end = pertinent_roots[current_vertex]->end();
- for (roots_itr = pertinent_roots[current_vertex]->begin();
- roots_itr != roots_end; ++roots_itr)
- {
- if (low_point
- [canonical_dfs_child[roots_itr->first_vertex()]]
- < dfs_number[v])
- {
- w = current_vertex;
- w_handle = *roots_itr;
- break;
- }
- }
- }
- }
- for (; face_itr != face_end; ++face_itr)
- {
- vertex_t current_vertex(*face_itr);
- upper_face_vertex[current_vertex] = true;
- bicomp_root = current_vertex;
- }
- typedef typename face_edge_iterator<>::type walkup_itr_t;
- std::vector< bool > outer_face_edge_vector(num_edges(g), false);
- edge_to_bool_map_t outer_face_edge(outer_face_edge_vector.begin(), em);
- walkup_itr_t walkup_end;
- for (walkup_itr_t walkup_itr(x, face_handles, first_side());
- walkup_itr != walkup_end; ++walkup_itr)
- {
- outer_face_edge[*walkup_itr] = true;
- is_in_subgraph[*walkup_itr] = true;
- }
- for (walkup_itr_t walkup_itr(x, face_handles, second_side());
- walkup_itr != walkup_end; ++walkup_itr)
- {
- outer_face_edge[*walkup_itr] = true;
- is_in_subgraph[*walkup_itr] = true;
- }
- std::vector< bool > forbidden_edge_vector(num_edges(g), false);
- edge_to_bool_map_t forbidden_edge(forbidden_edge_vector.begin(), em);
- std::vector< bool > goal_edge_vector(num_edges(g), false);
- edge_to_bool_map_t goal_edge(goal_edge_vector.begin(), em);
- // Find external path to x and to y
- for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
- {
- edge_t e(*ei);
- goal_edge[e] = !outer_face_edge[e]
- && (source(e, g) == x || target(e, g) == x);
- forbidden_edge[*ei] = outer_face_edge[*ei];
- }
- vertex_t x_ancestor = v;
- vertex_t x_endpoint = graph_traits< Graph >::null_vertex();
- while (x_endpoint == graph_traits< Graph >::null_vertex())
- {
- x_ancestor = dfs_parent[x_ancestor];
- x_endpoint = kuratowski_walkup(x_ancestor, forbidden_edge,
- goal_edge, is_embedded, x_external_path);
- }
- for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
- {
- edge_t e(*ei);
- goal_edge[e] = !outer_face_edge[e]
- && (source(e, g) == y || target(e, g) == y);
- forbidden_edge[*ei] = outer_face_edge[*ei];
- }
- vertex_t y_ancestor = v;
- vertex_t y_endpoint = graph_traits< Graph >::null_vertex();
- while (y_endpoint == graph_traits< Graph >::null_vertex())
- {
- y_ancestor = dfs_parent[y_ancestor];
- y_endpoint = kuratowski_walkup(y_ancestor, forbidden_edge,
- goal_edge, is_embedded, y_external_path);
- }
- vertex_t parent, child;
- // If v isn't on the same bicomp as x and y, it's a case A
- if (bicomp_root != v)
- {
- chosen_case = detail::BM_CASE_A;
- for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
- if (lower_face_vertex[*vi])
- for (boost::tie(oei, oei_end) = out_edges(*vi, g);
- oei != oei_end; ++oei)
- if (!outer_face_edge[*oei])
- goal_edge[*oei] = true;
- for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
- forbidden_edge[*ei] = outer_face_edge[*ei];
- z = kuratowski_walkup(
- v, forbidden_edge, goal_edge, is_embedded, z_v_path);
- }
- else if (w != graph_traits< Graph >::null_vertex())
- {
- chosen_case = detail::BM_CASE_B;
- for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
- {
- edge_t e(*ei);
- goal_edge[e] = false;
- forbidden_edge[e] = outer_face_edge[e];
- }
- goal_edge[w_handle.first_edge()] = true;
- goal_edge[w_handle.second_edge()] = true;
- z = kuratowski_walkup(
- v, forbidden_edge, goal_edge, is_embedded, z_v_path);
- for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
- {
- forbidden_edge[*ei] = outer_face_edge[*ei];
- }
- typename std::vector< edge_t >::iterator pi, pi_end;
- pi_end = z_v_path.end();
- for (pi = z_v_path.begin(); pi != pi_end; ++pi)
- {
- goal_edge[*pi] = true;
- }
- w_ancestor = v;
- vertex_t w_endpoint = graph_traits< Graph >::null_vertex();
- while (w_endpoint == graph_traits< Graph >::null_vertex())
- {
- w_ancestor = dfs_parent[w_ancestor];
- w_endpoint = kuratowski_walkup(
- w_ancestor, forbidden_edge, goal_edge, is_embedded, w_path);
- }
- // We really want both the w walkup and the z walkup to finish on
- // exactly the same edge, but for convenience (since we don't have
- // control over which side of a bicomp a walkup moves up) we've
- // defined the walkup to either end at w_handle.first_edge() or
- // w_handle.second_edge(). If both walkups ended at different edges,
- // we'll do a little surgery on the w walkup path to make it follow
- // the other side of the final bicomp.
- if ((w_path.back() == w_handle.first_edge()
- && z_v_path.back() == w_handle.second_edge())
- || (w_path.back() == w_handle.second_edge()
- && z_v_path.back() == w_handle.first_edge()))
- {
- walkup_itr_t wi, wi_end;
- edge_t final_edge = w_path.back();
- vertex_t anchor = source(final_edge, g) == w_handle.get_anchor()
- ? target(final_edge, g)
- : source(final_edge, g);
- if (face_handles[anchor].first_edge() == final_edge)
- wi = walkup_itr_t(anchor, face_handles, second_side());
- else
- wi = walkup_itr_t(anchor, face_handles, first_side());
- w_path.pop_back();
- for (; wi != wi_end; ++wi)
- {
- edge_t e(*wi);
- if (w_path.back() == e)
- w_path.pop_back();
- else
- w_path.push_back(e);
- }
- }
- }
- else
- {
- // We need to find a valid z, since the x-y path re-defines the
- // lower face, and the z we found earlier may now be on the upper
- // face.
- chosen_case = detail::BM_CASE_E;
- // The z we've used so far is just an externally active vertex on
- // the lower face path, but may not be the z we need for a case C,
- // D, or E subgraph. the z we need now is any externally active
- // vertex on the lower face path with both old_face_handles edges on
- // the outer face. Since we know an x-y path exists, such a z must
- // also exist.
- // TODO: find this z in the first place.
- // find the new z
- for (face_itr = x_lower_itr; *face_itr != y; ++face_itr)
- {
- vertex_t possible_z(*face_itr);
- if (pertinent(possible_z, v)
- && outer_face_edge[face_handles[possible_z]
- .old_first_edge()]
- && outer_face_edge[face_handles[possible_z]
- .old_second_edge()])
- {
- z = possible_z;
- break;
- }
- }
- // find x-y path, and a w if one exists.
- if (externally_active(z, v))
- w = z;
- typedef typename face_edge_iterator< single_side,
- previous_iteration >::type old_face_iterator_t;
- old_face_iterator_t first_old_face_itr(
- z, face_handles, first_side());
- old_face_iterator_t second_old_face_itr(
- z, face_handles, second_side());
- old_face_iterator_t old_face_itr, old_face_end;
- std::vector< old_face_iterator_t > old_face_iterators;
- old_face_iterators.push_back(first_old_face_itr);
- old_face_iterators.push_back(second_old_face_itr);
- std::vector< bool > x_y_path_vertex_vector(num_vertices(g), false);
- vertex_to_bool_map_t x_y_path_vertex(
- x_y_path_vertex_vector.begin(), vm);
- typename std::vector< old_face_iterator_t >::iterator of_itr,
- of_itr_end;
- of_itr_end = old_face_iterators.end();
- for (of_itr = old_face_iterators.begin(); of_itr != of_itr_end;
- ++of_itr)
- {
- old_face_itr = *of_itr;
- vertex_t previous_vertex;
- bool seen_x_or_y = false;
- vertex_t current_vertex = z;
- for (; old_face_itr != old_face_end; ++old_face_itr)
- {
- edge_t e(*old_face_itr);
- previous_vertex = current_vertex;
- current_vertex = source(e, g) == current_vertex
- ? target(e, g)
- : source(e, g);
- if (current_vertex == x || current_vertex == y)
- seen_x_or_y = true;
- if (w == graph_traits< Graph >::null_vertex()
- && externally_active(current_vertex, v)
- && outer_face_edge[e]
- && outer_face_edge[*boost::next(old_face_itr)]
- && !seen_x_or_y)
- {
- w = current_vertex;
- }
- if (!outer_face_edge[e])
- {
- if (!upper_face_vertex[current_vertex]
- && !lower_face_vertex[current_vertex])
- {
- x_y_path_vertex[current_vertex] = true;
- }
- is_in_subgraph[e] = true;
- if (upper_face_vertex[source(e, g)]
- || lower_face_vertex[source(e, g)])
- {
- if (first_x_y_path_endpoint
- == graph_traits< Graph >::null_vertex())
- first_x_y_path_endpoint = source(e, g);
- else
- second_x_y_path_endpoint = source(e, g);
- }
- if (upper_face_vertex[target(e, g)]
- || lower_face_vertex[target(e, g)])
- {
- if (first_x_y_path_endpoint
- == graph_traits< Graph >::null_vertex())
- first_x_y_path_endpoint = target(e, g);
- else
- second_x_y_path_endpoint = target(e, g);
- }
- }
- else if (previous_vertex == x || previous_vertex == y)
- {
- chosen_case = detail::BM_CASE_C;
- }
- }
- }
- // Look for a case D - one of v's embedded edges will connect to the
- // x-y path along an inner face path.
- // First, get a list of all of v's embedded child edges
- out_edge_iterator_t v_edge_itr, v_edge_end;
- for (boost::tie(v_edge_itr, v_edge_end) = out_edges(v, g);
- v_edge_itr != v_edge_end; ++v_edge_itr)
- {
- edge_t embedded_edge(*v_edge_itr);
- if (!is_embedded[embedded_edge]
- || embedded_edge == dfs_parent_edge[v])
- continue;
- case_d_edges.push_back(embedded_edge);
- vertex_t current_vertex = source(embedded_edge, g) == v
- ? target(embedded_edge, g)
- : source(embedded_edge, g);
- typename face_edge_iterator<>::type internal_face_itr,
- internal_face_end;
- if (face_handles[current_vertex].first_vertex() == v)
- {
- internal_face_itr = typename face_edge_iterator<>::type(
- current_vertex, face_handles, second_side());
- }
- else
- {
- internal_face_itr = typename face_edge_iterator<>::type(
- current_vertex, face_handles, first_side());
- }
- while (internal_face_itr != internal_face_end
- && !outer_face_edge[*internal_face_itr]
- && !x_y_path_vertex[current_vertex])
- {
- edge_t e(*internal_face_itr);
- case_d_edges.push_back(e);
- current_vertex = source(e, g) == current_vertex
- ? target(e, g)
- : source(e, g);
- ++internal_face_itr;
- }
- if (x_y_path_vertex[current_vertex])
- {
- chosen_case = detail::BM_CASE_D;
- break;
- }
- else
- {
- case_d_edges.clear();
- }
- }
- }
- if (chosen_case != detail::BM_CASE_B
- && chosen_case != detail::BM_CASE_A)
- {
- // Finding z and w.
- for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
- {
- edge_t e(*ei);
- goal_edge[e] = !outer_face_edge[e]
- && (source(e, g) == z || target(e, g) == z);
- forbidden_edge[e] = outer_face_edge[e];
- }
- kuratowski_walkup(
- v, forbidden_edge, goal_edge, is_embedded, z_v_path);
- if (chosen_case == detail::BM_CASE_E)
- {
- for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
- {
- forbidden_edge[*ei] = outer_face_edge[*ei];
- goal_edge[*ei] = !outer_face_edge[*ei]
- && (source(*ei, g) == w || target(*ei, g) == w);
- }
- for (boost::tie(oei, oei_end) = out_edges(w, g); oei != oei_end;
- ++oei)
- {
- if (!outer_face_edge[*oei])
- goal_edge[*oei] = true;
- }
- typename std::vector< edge_t >::iterator pi, pi_end;
- pi_end = z_v_path.end();
- for (pi = z_v_path.begin(); pi != pi_end; ++pi)
- {
- goal_edge[*pi] = true;
- }
- w_ancestor = v;
- vertex_t w_endpoint = graph_traits< Graph >::null_vertex();
- while (w_endpoint == graph_traits< Graph >::null_vertex())
- {
- w_ancestor = dfs_parent[w_ancestor];
- w_endpoint = kuratowski_walkup(w_ancestor, forbidden_edge,
- goal_edge, is_embedded, w_path);
- }
- }
- }
- // We're done isolating the Kuratowski subgraph at this point -
- // but there's still some cleaning up to do.
- // Update is_in_subgraph with the paths we just found
- xi_end = x_external_path.end();
- for (xi = x_external_path.begin(); xi != xi_end; ++xi)
- is_in_subgraph[*xi] = true;
- xi_end = y_external_path.end();
- for (xi = y_external_path.begin(); xi != xi_end; ++xi)
- is_in_subgraph[*xi] = true;
- xi_end = z_v_path.end();
- for (xi = z_v_path.begin(); xi != xi_end; ++xi)
- is_in_subgraph[*xi] = true;
- xi_end = case_d_edges.end();
- for (xi = case_d_edges.begin(); xi != xi_end; ++xi)
- is_in_subgraph[*xi] = true;
- xi_end = w_path.end();
- for (xi = w_path.begin(); xi != xi_end; ++xi)
- is_in_subgraph[*xi] = true;
- child = bicomp_root;
- parent = dfs_parent[child];
- while (child != parent)
- {
- is_in_subgraph[dfs_parent_edge[child]] = true;
- boost::tie(parent, child)
- = std::make_pair(dfs_parent[parent], parent);
- }
- // At this point, we've already isolated the Kuratowski subgraph and
- // collected all of the edges that compose it in the is_in_subgraph
- // property map. But we want the verification of such a subgraph to be
- // a deterministic process, and we can simplify the function
- // is_kuratowski_subgraph by cleaning up some edges here.
- if (chosen_case == detail::BM_CASE_B)
- {
- is_in_subgraph[dfs_parent_edge[v]] = false;
- }
- else if (chosen_case == detail::BM_CASE_C)
- {
- // In a case C subgraph, at least one of the x-y path endpoints
- // (call it alpha) is above either x or y on the outer face. The
- // other endpoint may be attached at x or y OR above OR below. In
- // any of these three cases, we can form a K_3_3 by removing the
- // edge attached to v on the outer face that is NOT on the path to
- // alpha.
- typename face_vertex_iterator< single_side, follow_visitor >::type
- face_itr,
- face_end;
- if (face_handles[v_dfchild_handle.first_vertex()].first_edge()
- == v_dfchild_handle.first_edge())
- {
- face_itr = typename face_vertex_iterator< single_side,
- follow_visitor >::type(v_dfchild_handle.first_vertex(),
- face_handles, second_side());
- }
- else
- {
- face_itr = typename face_vertex_iterator< single_side,
- follow_visitor >::type(v_dfchild_handle.first_vertex(),
- face_handles, first_side());
- }
- for (; true; ++face_itr)
- {
- vertex_t current_vertex(*face_itr);
- if (current_vertex == x || current_vertex == y)
- {
- is_in_subgraph[v_dfchild_handle.first_edge()] = false;
- break;
- }
- else if (current_vertex == first_x_y_path_endpoint
- || current_vertex == second_x_y_path_endpoint)
- {
- is_in_subgraph[v_dfchild_handle.second_edge()] = false;
- break;
- }
- }
- }
- else if (chosen_case == detail::BM_CASE_D)
- {
- // Need to remove both of the edges adjacent to v on the outer face.
- // remove the connecting edges from v to bicomp, then
- // is_kuratowski_subgraph will shrink vertices of degree 1
- // automatically...
- is_in_subgraph[v_dfchild_handle.first_edge()] = false;
- is_in_subgraph[v_dfchild_handle.second_edge()] = false;
- }
- else if (chosen_case == detail::BM_CASE_E)
- {
- // Similarly to case C, if the endpoints of the x-y path are both
- // below x and y, we should remove an edge to allow the subgraph to
- // contract to a K_3_3.
- if ((first_x_y_path_endpoint != x && first_x_y_path_endpoint != y)
- || (second_x_y_path_endpoint != x
- && second_x_y_path_endpoint != y))
- {
- is_in_subgraph[dfs_parent_edge[v]] = false;
- vertex_t deletion_endpoint, other_endpoint;
- if (lower_face_vertex[first_x_y_path_endpoint])
- {
- deletion_endpoint = second_x_y_path_endpoint;
- other_endpoint = first_x_y_path_endpoint;
- }
- else
- {
- deletion_endpoint = first_x_y_path_endpoint;
- other_endpoint = second_x_y_path_endpoint;
- }
- typename face_edge_iterator<>::type face_itr, face_end;
- bool found_other_endpoint = false;
- for (face_itr = typename face_edge_iterator<>::type(
- deletion_endpoint, face_handles, first_side());
- face_itr != face_end; ++face_itr)
- {
- edge_t e(*face_itr);
- if (source(e, g) == other_endpoint
- || target(e, g) == other_endpoint)
- {
- found_other_endpoint = true;
- break;
- }
- }
- if (found_other_endpoint)
- {
- is_in_subgraph[face_handles[deletion_endpoint].first_edge()]
- = false;
- }
- else
- {
- is_in_subgraph[face_handles[deletion_endpoint]
- .second_edge()]
- = false;
- }
- }
- }
- for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
- if (is_in_subgraph[*ei])
- *o_itr = *ei;
- }
- template < typename EdgePermutation >
- void make_edge_permutation(EdgePermutation perm)
- {
- vertex_iterator_t vi, vi_end;
- for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
- {
- vertex_t v(*vi);
- perm[v].clear();
- face_handles[v].get_list(std::back_inserter(perm[v]));
- }
- }
- private:
- const Graph& g;
- VertexIndexMap vm;
- vertex_t kuratowski_v;
- vertex_t kuratowski_x;
- vertex_t kuratowski_y;
- vertex_list_t garbage; // we delete items from linked lists by
- // splicing them into garbage
- // only need these two for kuratowski subgraph isolation
- std::vector< vertex_t > current_merge_points;
- std::vector< edge_t > embedded_edges;
- // property map storage
- std::vector< v_size_t > low_point_vector;
- std::vector< vertex_t > dfs_parent_vector;
- std::vector< v_size_t > dfs_number_vector;
- std::vector< v_size_t > least_ancestor_vector;
- std::vector< face_handle_list_ptr_t > pertinent_roots_vector;
- std::vector< v_size_t > backedge_flag_vector;
- std::vector< v_size_t > visited_vector;
- std::vector< face_handle_t > face_handles_vector;
- std::vector< face_handle_t > dfs_child_handles_vector;
- std::vector< vertex_list_ptr_t > separated_dfs_child_list_vector;
- std::vector< typename vertex_list_t::iterator >
- separated_node_in_parent_list_vector;
- std::vector< vertex_t > canonical_dfs_child_vector;
- std::vector< bool > flipped_vector;
- std::vector< edge_vector_t > backedges_vector;
- edge_vector_t self_loops;
- std::vector< edge_t > dfs_parent_edge_vector;
- vertex_vector_t vertices_by_dfs_num;
- // property maps
- vertex_to_v_size_map_t low_point;
- vertex_to_vertex_map_t dfs_parent;
- vertex_to_v_size_map_t dfs_number;
- vertex_to_v_size_map_t least_ancestor;
- vertex_to_face_handle_list_ptr_map_t pertinent_roots;
- vertex_to_v_size_map_t backedge_flag;
- vertex_to_v_size_map_t visited;
- vertex_to_face_handle_map_t face_handles;
- vertex_to_face_handle_map_t dfs_child_handles;
- vertex_to_vertex_list_ptr_map_t separated_dfs_child_list;
- vertex_to_separated_node_map_t separated_node_in_parent_list;
- vertex_to_vertex_map_t canonical_dfs_child;
- vertex_to_bool_map_t flipped;
- vertex_to_edge_vector_map_t backedges;
- vertex_to_edge_map_t dfs_parent_edge; // only need for kuratowski
- merge_stack_t merge_stack;
- };
- } // namespace boost
- #endif //__BOYER_MYRVOLD_IMPL_HPP__
|