123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201 |
- // Copyright 2020-2023 Daniel Lemire
- // Copyright 2023 Matt Borland
- // Distributed under the Boost Software License, Version 1.0.
- // https://www.boost.org/LICENSE_1_0.txt
- #ifndef BOOST_CHARCONV_DETAIL_COMPUTE_FLOAT64_HPP
- #define BOOST_CHARCONV_DETAIL_COMPUTE_FLOAT64_HPP
- #include <boost/charconv/detail/config.hpp>
- #include <boost/charconv/detail/significand_tables.hpp>
- #include <boost/charconv/detail/emulated128.hpp>
- #include <boost/core/bit.hpp>
- #include <cstdint>
- #include <cfloat>
- #include <cstring>
- #include <cmath>
- namespace boost { namespace charconv { namespace detail {
- static constexpr double powers_of_ten[] = {
- 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11,
- 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22
- };
- // Attempts to compute i * 10^(power) exactly; and if "negative" is true, negate the result.
- //
- // This function will only work in some cases, when it does not work, success is
- // set to false. This should work *most of the time* (like 99% of the time).
- // We assume that power is in the [-325, 308] interval.
- inline double compute_float64(std::int64_t power, std::uint64_t i, bool negative, bool& success) noexcept
- {
- static constexpr auto smallest_power = -325;
- static constexpr auto largest_power = 308;
- // We start with a fast path
- // It was described in Clinger WD.
- // How to read floating point numbers accurately.
- // ACM SIGPLAN Notices. 1990
- #if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
- if (0 <= power && power <= 22 && i <= UINT64_C(9007199254740991))
- #else
- if (-22 <= power && power <= 22 && i <= UINT64_C(9007199254740991))
- #endif
- {
- // The general idea is as follows.
- // If 0 <= s < 2^53 and if 10^0 <= p <= 10^22 then
- // 1) Both s and p can be represented exactly as 64-bit floating-point
- // values
- // (binary64).
- // 2) Because s and p can be represented exactly as floating-point values,
- // then s * p
- // and s / p will produce correctly rounded values.
-
- auto d = static_cast<double>(i);
-
- if (power < 0)
- {
- d = d / powers_of_ten[-power];
- }
- else
- {
- d = d * powers_of_ten[power];
- }
-
- if (negative)
- {
- d = -d;
- }
- success = true;
- return d;
- }
- // When 22 < power && power < 22 + 16, we could
- // hope for another, secondary fast path. It was
- // described by David M. Gay in "Correctly rounded
- // binary-decimal and decimal-binary conversions." (1990)
- // If you need to compute i * 10^(22 + x) for x < 16,
- // first compute i * 10^x, if you know that result is exact
- // (e.g., when i * 10^x < 2^53),
- // then you can still proceed and do (i * 10^x) * 10^22.
- // Is this worth your time?
- // You need 22 < power *and* power < 22 + 16 *and* (i * 10^(x-22) < 2^53)
- // for this second fast path to work.
- // If you have 22 < power *and* power < 22 + 16, and then you
- // optimistically compute "i * 10^(x-22)", there is still a chance that you
- // have wasted your time if i * 10^(x-22) >= 2^53. It makes the use cases of
- // this optimization maybe less common than we would like. Source:
- // http://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/
- // also used in RapidJSON: https://rapidjson.org/strtod_8h_source.html
- if (i == 0 || power < smallest_power)
- {
- return negative ? -0.0 : 0.0;
- }
- else if (power > largest_power)
- {
- return negative ? -HUGE_VAL : HUGE_VAL;
- }
- const std::uint64_t factor_significand = significands_table::significand_64[power - smallest_power];
- const std::int64_t exponent = (((152170 + 65536) * power) >> 16) + 1024 + 63;
- int leading_zeros = boost::core::countl_zero(i);
- i <<= static_cast<std::uint64_t>(leading_zeros);
- uint128 product = umul128(i, factor_significand);
- std::uint64_t low = product.low;
- std::uint64_t high = product.high;
- // We know that upper has at most one leading zero because
- // both i and factor_mantissa have a leading one. This means
- // that the result is at least as large as ((1<<63)*(1<<63))/(1<<64).
- //
- // As long as the first 9 bits of "upper" are not "1", then we
- // know that we have an exact computed value for the leading
- // 55 bits because any imprecision would play out as a +1, in the worst case.
- // Having 55 bits is necessary because we need 53 bits for the mantissa,
- // but we have to have one rounding bit and, we can waste a bit if the most
- // significant bit of the product is zero.
- //
- // We expect this next branch to be rarely taken (say 1% of the time).
- // When (upper & 0x1FF) == 0x1FF, it can be common for
- // lower + i < lower to be true (proba. much higher than 1%).
- if (BOOST_UNLIKELY((high & 0x1FF) == 0x1FF) && (low + i < low))
- {
- const std::uint64_t factor_significand_low = significands_table::significand_128[power - smallest_power];
- product = umul128(i, factor_significand_low);
- //const std::uint64_t product_low = product.low;
- const std::uint64_t product_middle2 = product.high;
- const std::uint64_t product_middle1 = low;
- std::uint64_t product_high = high;
- const std::uint64_t product_middle = product_middle1 + product_middle2;
- if (product_middle < product_middle1)
- {
- product_high++;
- }
- // Commented out because possibly unneeded
- // See: https://arxiv.org/pdf/2212.06644.pdf
- /*
- // we want to check whether mantissa *i + i would affect our result
- // This does happen, e.g. with 7.3177701707893310e+15
- if (((product_middle + 1 == 0) && ((product_high & 0x1FF) == 0x1FF) && (product_low + i < product_low)))
- {
- success = false;
- return 0;
- }
- */
- low = product_middle;
- high = product_high;
- }
- // The final significand should be 53 bits with a leading 1
- // We shift it so that it occupies 54 bits with a leading 1
- const std::uint64_t upper_bit = high >> 63;
- std::uint64_t significand = high >> (upper_bit + 9);
- leading_zeros += static_cast<int>(1 ^ upper_bit);
- // If we have lots of trailing zeros we may fall between two values
- if (BOOST_UNLIKELY((low == 0) && ((high & 0x1FF) == 0) && ((significand & 3) == 1)))
- {
- // if significand & 1 == 1 we might need to round up
- success = false;
- return 0;
- }
- significand += significand & 1;
- significand >>= 1;
- // Here the significand < (1<<53), unless there is an overflow
- if (significand >= (UINT64_C(1) << 53))
- {
- significand = (UINT64_C(1) << 52);
- leading_zeros--;
- }
- significand &= ~(UINT64_C(1) << 52);
- const auto real_exponent = static_cast<std::uint64_t>(exponent - leading_zeros);
- // We have to check that real_exponent is in range, otherwise fail
- if (BOOST_UNLIKELY((real_exponent < 1) || (real_exponent > 2046)))
- {
- success = false;
- return 0;
- }
- significand |= real_exponent << 52;
- significand |= ((static_cast<std::uint64_t>(negative) << 63));
-
- double d;
- std::memcpy(&d, &significand, sizeof(d));
- success = true;
- return d;
- }
- }}} // Namespaces
- #endif // BOOST_CHARCONV_DETAIL_COMPUTE_FLOAT64_HPP
|