// Boost.Units - A C++ library for zero-overhead dimensional analysis and // unit/quantity manipulation and conversion // // Copyright (C) 2003-2008 Matthias Christian Schabel // Copyright (C) 2008 Steven Watanabe // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_UNITS_CODATA_ELECTRON_CONSTANTS_HPP #define BOOST_UNITS_CODATA_ELECTRON_CONSTANTS_HPP #include <boost/units/quantity.hpp> #include <boost/units/static_constant.hpp> #include <boost/units/systems/detail/constants.hpp> #include <boost/units/systems/si/amount.hpp> #include <boost/units/systems/si/area.hpp> #include <boost/units/systems/si/electric_charge.hpp> #include <boost/units/systems/si/energy.hpp> #include <boost/units/systems/si/frequency.hpp> #include <boost/units/systems/si/length.hpp> #include <boost/units/systems/si/mass.hpp> #include <boost/units/systems/si/magnetic_flux_density.hpp> #include <boost/units/systems/si/time.hpp> #include <boost/units/systems/si/wavenumber.hpp> #include <boost/units/systems/si/codata/typedefs.hpp> /// \file /// CODATA recommended values of fundamental atomic and nuclear constants /// CODATA 2006 values as of 2007/03/30 namespace boost { namespace units { namespace si { namespace constants { namespace codata { /// CODATA recommended values of the fundamental physical constants: NIST SP 961 /// electron mass BOOST_UNITS_PHYSICAL_CONSTANT(m_e,quantity<mass>,9.10938215e-31*kilograms,4.5e-38*kilograms); /// electron-muon mass ratio BOOST_UNITS_PHYSICAL_CONSTANT(m_e_over_m_mu,quantity<dimensionless>,4.83633171e-3*dimensionless(),1.2e-10*dimensionless()); /// electron-tau mass ratio BOOST_UNITS_PHYSICAL_CONSTANT(m_e_over_m_tau,quantity<dimensionless>,2.87564e-4*dimensionless(),4.7e-8*dimensionless()); /// electron-proton mass ratio BOOST_UNITS_PHYSICAL_CONSTANT(m_e_over_m_p,quantity<dimensionless>,5.4461702177e-4*dimensionless(),2.4e-13*dimensionless()); /// electron-neutron mass ratio BOOST_UNITS_PHYSICAL_CONSTANT(m_e_over_m_n,quantity<dimensionless>,5.4386734459e-4*dimensionless(),3.3e-13*dimensionless()); /// electron-deuteron mass ratio BOOST_UNITS_PHYSICAL_CONSTANT(m_e_over_m_d,quantity<dimensionless>,2.7244371093e-4*dimensionless(),1.2e-13*dimensionless()); /// electron-alpha particle mass ratio BOOST_UNITS_PHYSICAL_CONSTANT(m_e_over_m_alpha,quantity<dimensionless>,1.37093355570e-4*dimensionless(),5.8e-14*dimensionless()); /// electron charge to mass ratio BOOST_UNITS_PHYSICAL_CONSTANT(e_over_m_e,quantity<electric_charge_over_mass>,1.758820150e11*coulombs/kilogram,4.4e3*coulombs/kilogram); /// electron molar mass BOOST_UNITS_PHYSICAL_CONSTANT(M_e,quantity<mass_over_amount>,5.4857990943e-7*kilograms/mole,2.3e-16*kilograms/mole); /// Compton wavelength BOOST_UNITS_PHYSICAL_CONSTANT(lambda_C,quantity<length>,2.4263102175e-12*meters,3.3e-21*meters); /// classical electron radius BOOST_UNITS_PHYSICAL_CONSTANT(r_e,quantity<length>,2.8179402894e-15*meters,5.8e-24*meters); /// Thompson cross section BOOST_UNITS_PHYSICAL_CONSTANT(sigma_e,quantity<area>,0.6652458558e-28*square_meters,2.7e-37*square_meters); /// electron magnetic moment BOOST_UNITS_PHYSICAL_CONSTANT(mu_e,quantity<energy_over_magnetic_flux_density>,-928.476377e-26*joules/tesla,2.3e-31*joules/tesla); /// electron-Bohr magenton moment ratio BOOST_UNITS_PHYSICAL_CONSTANT(mu_e_over_mu_B,quantity<dimensionless>,-1.00115965218111*dimensionless(),7.4e-13*dimensionless()); /// electron-nuclear magneton moment ratio BOOST_UNITS_PHYSICAL_CONSTANT(mu_e_over_mu_N,quantity<dimensionless>,-183.28197092*dimensionless(),8.0e-7*dimensionless()); /// electron magnetic moment anomaly BOOST_UNITS_PHYSICAL_CONSTANT(a_e,quantity<dimensionless>,1.15965218111e-3*dimensionless(),7.4e-13*dimensionless()); /// electron g-factor BOOST_UNITS_PHYSICAL_CONSTANT(g_e,quantity<dimensionless>,-2.0023193043622*dimensionless(),1.5e-12*dimensionless()); /// electron-muon magnetic moment ratio BOOST_UNITS_PHYSICAL_CONSTANT(mu_e_over_mu_mu,quantity<dimensionless>,206.7669877*dimensionless(),5.2e-6*dimensionless()); /// electron-proton magnetic moment ratio BOOST_UNITS_PHYSICAL_CONSTANT(mu_e_over_mu_p,quantity<dimensionless>,-658.2106848*dimensionless(),5.4e-6*dimensionless()); /// electron-shielded proton magnetic moment ratio BOOST_UNITS_PHYSICAL_CONSTANT(mu_e_over_mu_p_prime,quantity<dimensionless>,-658.2275971*dimensionless(),7.2e-6*dimensionless()); /// electron-neutron magnetic moment ratio BOOST_UNITS_PHYSICAL_CONSTANT(mu_e_over_mu_n,quantity<dimensionless>,960.92050*dimensionless(),2.3e-4*dimensionless()); /// electron-deuteron magnetic moment ratio BOOST_UNITS_PHYSICAL_CONSTANT(mu_e_over_mu_d,quantity<dimensionless>,-2143.923498*dimensionless(),1.8e-5*dimensionless()); /// electron-shielded helion magnetic moment ratio BOOST_UNITS_PHYSICAL_CONSTANT(mu_e_over_mu_h_prime,quantity<dimensionless>,864.058257*dimensionless(),1.0e-5*dimensionless()); /// electron gyromagnetic ratio BOOST_UNITS_PHYSICAL_CONSTANT(gamma_e,quantity<frequency_over_magnetic_flux_density>,1.760859770e11/second/tesla,4.4e3/second/tesla); } // namespace codata } // namespace constants } // namespace si } // namespace units } // namespace boost #endif // BOOST_UNITS_CODATA_ELECTRON_CONSTANTS_HPP