// Copyright 2020-2023 Daniel Lemire // Copyright 2023 Matt Borland // Distributed under the Boost Software License, Version 1.0. // https://www.boost.org/LICENSE_1_0.txt #ifndef BOOST_CHARCONV_DETAIL_COMPUTE_FLOAT64_HPP #define BOOST_CHARCONV_DETAIL_COMPUTE_FLOAT64_HPP #include #include #include #include #include #include #include #include namespace boost { namespace charconv { namespace detail { static constexpr double powers_of_ten[] = { 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22 }; // Attempts to compute i * 10^(power) exactly; and if "negative" is true, negate the result. // // This function will only work in some cases, when it does not work, success is // set to false. This should work *most of the time* (like 99% of the time). // We assume that power is in the [-325, 308] interval. inline double compute_float64(std::int64_t power, std::uint64_t i, bool negative, bool& success) noexcept { static constexpr auto smallest_power = -325; static constexpr auto largest_power = 308; // We start with a fast path // It was described in Clinger WD. // How to read floating point numbers accurately. // ACM SIGPLAN Notices. 1990 #if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) if (0 <= power && power <= 22 && i <= UINT64_C(9007199254740991)) #else if (-22 <= power && power <= 22 && i <= UINT64_C(9007199254740991)) #endif { // The general idea is as follows. // If 0 <= s < 2^53 and if 10^0 <= p <= 10^22 then // 1) Both s and p can be represented exactly as 64-bit floating-point // values // (binary64). // 2) Because s and p can be represented exactly as floating-point values, // then s * p // and s / p will produce correctly rounded values. auto d = static_cast(i); if (power < 0) { d = d / powers_of_ten[-power]; } else { d = d * powers_of_ten[power]; } if (negative) { d = -d; } success = true; return d; } // When 22 < power && power < 22 + 16, we could // hope for another, secondary fast path. It was // described by David M. Gay in "Correctly rounded // binary-decimal and decimal-binary conversions." (1990) // If you need to compute i * 10^(22 + x) for x < 16, // first compute i * 10^x, if you know that result is exact // (e.g., when i * 10^x < 2^53), // then you can still proceed and do (i * 10^x) * 10^22. // Is this worth your time? // You need 22 < power *and* power < 22 + 16 *and* (i * 10^(x-22) < 2^53) // for this second fast path to work. // If you have 22 < power *and* power < 22 + 16, and then you // optimistically compute "i * 10^(x-22)", there is still a chance that you // have wasted your time if i * 10^(x-22) >= 2^53. It makes the use cases of // this optimization maybe less common than we would like. Source: // http://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/ // also used in RapidJSON: https://rapidjson.org/strtod_8h_source.html if (i == 0 || power < smallest_power) { return negative ? -0.0 : 0.0; } else if (power > largest_power) { return negative ? -HUGE_VAL : HUGE_VAL; } const std::uint64_t factor_significand = significands_table::significand_64[power - smallest_power]; const std::int64_t exponent = (((152170 + 65536) * power) >> 16) + 1024 + 63; int leading_zeros = boost::core::countl_zero(i); i <<= static_cast(leading_zeros); uint128 product = umul128(i, factor_significand); std::uint64_t low = product.low; std::uint64_t high = product.high; // We know that upper has at most one leading zero because // both i and factor_mantissa have a leading one. This means // that the result is at least as large as ((1<<63)*(1<<63))/(1<<64). // // As long as the first 9 bits of "upper" are not "1", then we // know that we have an exact computed value for the leading // 55 bits because any imprecision would play out as a +1, in the worst case. // Having 55 bits is necessary because we need 53 bits for the mantissa, // but we have to have one rounding bit and, we can waste a bit if the most // significant bit of the product is zero. // // We expect this next branch to be rarely taken (say 1% of the time). // When (upper & 0x1FF) == 0x1FF, it can be common for // lower + i < lower to be true (proba. much higher than 1%). if (BOOST_UNLIKELY((high & 0x1FF) == 0x1FF) && (low + i < low)) { const std::uint64_t factor_significand_low = significands_table::significand_128[power - smallest_power]; product = umul128(i, factor_significand_low); //const std::uint64_t product_low = product.low; const std::uint64_t product_middle2 = product.high; const std::uint64_t product_middle1 = low; std::uint64_t product_high = high; const std::uint64_t product_middle = product_middle1 + product_middle2; if (product_middle < product_middle1) { product_high++; } // Commented out because possibly unneeded // See: https://arxiv.org/pdf/2212.06644.pdf /* // we want to check whether mantissa *i + i would affect our result // This does happen, e.g. with 7.3177701707893310e+15 if (((product_middle + 1 == 0) && ((product_high & 0x1FF) == 0x1FF) && (product_low + i < product_low))) { success = false; return 0; } */ low = product_middle; high = product_high; } // The final significand should be 53 bits with a leading 1 // We shift it so that it occupies 54 bits with a leading 1 const std::uint64_t upper_bit = high >> 63; std::uint64_t significand = high >> (upper_bit + 9); leading_zeros += static_cast(1 ^ upper_bit); // If we have lots of trailing zeros we may fall between two values if (BOOST_UNLIKELY((low == 0) && ((high & 0x1FF) == 0) && ((significand & 3) == 1))) { // if significand & 1 == 1 we might need to round up success = false; return 0; } significand += significand & 1; significand >>= 1; // Here the significand < (1<<53), unless there is an overflow if (significand >= (UINT64_C(1) << 53)) { significand = (UINT64_C(1) << 52); leading_zeros--; } significand &= ~(UINT64_C(1) << 52); const auto real_exponent = static_cast(exponent - leading_zeros); // We have to check that real_exponent is in range, otherwise fail if (BOOST_UNLIKELY((real_exponent < 1) || (real_exponent > 2046))) { success = false; return 0; } significand |= real_exponent << 52; significand |= ((static_cast(negative) << 63)); double d; std::memcpy(&d, &significand, sizeof(d)); success = true; return d; } }}} // Namespaces #endif // BOOST_CHARCONV_DETAIL_COMPUTE_FLOAT64_HPP