// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2015 Barend Gehrels, Amsterdam, the Netherlands. // This file was modified by Oracle on 2017-2023. // Modifications copyright (c) 2017-2023 Oracle and/or its affiliates. // Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_ALGORITHMS_IS_CONVEX_HPP #define BOOST_GEOMETRY_ALGORITHMS_IS_CONVEX_HPP #include <boost/range/empty.hpp> #include <boost/range/size.hpp> #include <boost/geometry/algorithms/detail/equals/point_point.hpp> #include <boost/geometry/algorithms/detail/dummy_geometries.hpp> #include <boost/geometry/algorithms/detail/visit.hpp> #include <boost/geometry/core/closure.hpp> #include <boost/geometry/core/exterior_ring.hpp> #include <boost/geometry/core/interior_rings.hpp> #include <boost/geometry/core/visit.hpp> #include <boost/geometry/geometries/adapted/boost_variant.hpp> // For backward compatibility #include <boost/geometry/geometries/concepts/check.hpp> #include <boost/geometry/iterators/ever_circling_iterator.hpp> #include <boost/geometry/strategies/default_strategy.hpp> #include <boost/geometry/strategies/is_convex/cartesian.hpp> #include <boost/geometry/strategies/is_convex/geographic.hpp> #include <boost/geometry/strategies/is_convex/spherical.hpp> #include <boost/geometry/views/detail/closed_clockwise_view.hpp> namespace boost { namespace geometry { #ifndef DOXYGEN_NO_DETAIL namespace detail { namespace is_convex { struct ring_is_convex { template <typename Ring, typename Strategies> static inline bool apply(Ring const& ring, Strategies const& strategies) { std::size_t n = boost::size(ring); if (n < detail::minimum_ring_size<Ring>::value) { // (Too) small rings are considered as non-concave, is convex return true; } // Walk in clockwise direction, consider ring as closed // (though closure is not important in this algorithm - any dupped // point is skipped) using view_type = detail::closed_clockwise_view<Ring const>; view_type const view(ring); using it_type = geometry::ever_circling_range_iterator<view_type const>; it_type previous(view); it_type current(view); current++; auto const equals_strategy = strategies.relate(dummy_point(), dummy_point()); std::size_t index = 1; while (equals::equals_point_point(*current, *previous, equals_strategy) && index < n) { current++; index++; } if (index == n) { // All points are apparently equal return true; } it_type next = current; next++; while (equals::equals_point_point(*current, *next, equals_strategy)) { next++; } auto const side_strategy = strategies.side(); // We have now three different points on the ring // Walk through all points, use a counter because of the ever-circling // iterator for (std::size_t i = 0; i < n; i++) { int const side = side_strategy.apply(*previous, *current, *next); if (side == 1) { // Next is on the left side of clockwise ring: // the piece is not convex return false; } previous = current; current = next; // Advance next to next different point // (because there are non-equal points, this loop is not infinite) next++; while (equals::equals_point_point(*current, *next, equals_strategy)) { next++; } } return true; } }; struct polygon_is_convex { template <typename Polygon, typename Strategies> static inline bool apply(Polygon const& polygon, Strategies const& strategies) { return boost::empty(interior_rings(polygon)) && ring_is_convex::apply(exterior_ring(polygon), strategies); } }; struct multi_polygon_is_convex { template <typename MultiPolygon, typename Strategies> static inline bool apply(MultiPolygon const& multi_polygon, Strategies const& strategies) { auto const size = boost::size(multi_polygon); // TODO: this looks wrong, it should only return convex if all its rings are convex return size == 0 // For consistency with ring_is_convex || (size == 1 && polygon_is_convex::apply(range::front(multi_polygon), strategies)); } }; }} // namespace detail::is_convex #endif // DOXYGEN_NO_DETAIL #ifndef DOXYGEN_NO_DISPATCH namespace dispatch { template < typename Geometry, typename Tag = typename tag<Geometry>::type > struct is_convex { template <typename Strategies> static inline bool apply(Geometry const&, Strategies const&) { // Convexity is not defined for PointLike and Linear geometries. // We could implement this because the following definitions would work: // - no line segment between two points on the interior or boundary ever goes outside. // - convex_hull of geometry is equal to the original geometry, this implies equal // topological dimension. // For MultiPoint we'd have to check whether or not an arbitrary number of equal points // is stored. // MultiPolygon we'd have to check for continuous chain of Linestrings which would require // the use of relate(pt, seg) or distance(pt, pt) strategy. return false; } }; template <typename Box> struct is_convex<Box, box_tag> { template <typename Strategies> static inline bool apply(Box const& , Strategies const& ) { // Any box is convex (TODO: consider spherical boxes) // TODO: in spherical and geographic the answer would be "false" most of the time. // Assuming that: // - it even makes sense to consider Box in spherical and geographic in this context // because it's not a Polygon, e.g. it can degenerate to a Point. // - line segments are defined by geodesics and box edges by parallels and meridians // - we use this definition: A convex polygon is a simple polygon (not self-intersecting) // in which no line segment between two points on the boundary ever goes outside the // polygon. // Then a geodesic segment would go into the exterior of a Box for all horizontal edges // of a Box unless it was one of the poles (edge degenerated to a point) or equator and // longitude difference was lesser than 360 (otherwise depending on the CS there would be // no solution or there would be two possible solutions - segment going through one of // the poles, at least in case of oblate spheroid, either way the answer would probably // be "false"). return true; } }; template <typename Ring> struct is_convex<Ring, ring_tag> : detail::is_convex::ring_is_convex {}; template <typename Polygon> struct is_convex<Polygon, polygon_tag> : detail::is_convex::polygon_is_convex {}; template <typename MultiPolygon> struct is_convex<MultiPolygon, multi_polygon_tag> : detail::is_convex::multi_polygon_is_convex {}; } // namespace dispatch #endif // DOXYGEN_NO_DISPATCH namespace resolve_strategy { template < typename Strategies, bool IsUmbrella = strategies::detail::is_umbrella_strategy<Strategies>::value > struct is_convex { template <typename Geometry> static bool apply(Geometry const& geometry, Strategies const& strategies) { return dispatch::is_convex<Geometry>::apply(geometry, strategies); } }; template <typename Strategy> struct is_convex<Strategy, false> { template <typename Geometry> static bool apply(Geometry const& geometry, Strategy const& strategy) { using strategies::is_convex::services::strategy_converter; return dispatch::is_convex < Geometry >::apply(geometry, strategy_converter<Strategy>::get(strategy)); } }; template <> struct is_convex<default_strategy, false> { template <typename Geometry> static bool apply(Geometry const& geometry, default_strategy const& ) { typedef typename strategies::is_convex::services::default_strategy < Geometry >::type strategy_type; return dispatch::is_convex<Geometry>::apply(geometry, strategy_type()); } }; } // namespace resolve_strategy namespace resolve_dynamic { template <typename Geometry, typename Tag = typename tag<Geometry>::type> struct is_convex { template <typename Strategy> static bool apply(Geometry const& geometry, Strategy const& strategy) { concepts::check<Geometry const>(); return resolve_strategy::is_convex<Strategy>::apply(geometry, strategy); } }; template <typename Geometry> struct is_convex<Geometry, dynamic_geometry_tag> { template <typename Strategy> static inline bool apply(Geometry const& geometry, Strategy const& strategy) { bool result = false; traits::visit<Geometry>::apply([&](auto const& g) { result = is_convex<util::remove_cref_t<decltype(g)>>::apply(g, strategy); }, geometry); return result; } }; // NOTE: This is a simple implementation checking if a GC contains single convex geometry. // Technically a GC could store e.g. polygons touching with edges and together creating a convex // region. To check this we'd require relate() strategy and the algorithm would be quite complex. template <typename Geometry> struct is_convex<Geometry, geometry_collection_tag> { template <typename Strategy> static inline bool apply(Geometry const& geometry, Strategy const& strategy) { bool result = false; bool is_first = true; detail::visit_breadth_first([&](auto const& g) { result = is_first && is_convex<util::remove_cref_t<decltype(g)>>::apply(g, strategy); is_first = false; return result; }, geometry); return result; } }; } // namespace resolve_dynamic // TODO: documentation / qbk template<typename Geometry> inline bool is_convex(Geometry const& geometry) { return resolve_dynamic::is_convex < Geometry >::apply(geometry, geometry::default_strategy()); } // TODO: documentation / qbk template<typename Geometry, typename Strategy> inline bool is_convex(Geometry const& geometry, Strategy const& strategy) { return resolve_dynamic::is_convex<Geometry>::apply(geometry, strategy); } }} // namespace boost::geometry #endif // BOOST_GEOMETRY_ALGORITHMS_IS_CONVEX_HPP