// Copyright (c) 2006 Xiaogang Zhang // Copyright (c) 2006 John Maddock // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // History: // XZ wrote the original of this file as part of the Google // Summer of Code 2006. JM modified it to fit into the // Boost.Math conceptual framework better, and to ensure // that the code continues to work no matter how many digits // type T has. #ifndef BOOST_MATH_ELLINT_2_HPP #define BOOST_MATH_ELLINT_2_HPP #ifdef _MSC_VER #pragma once #endif #include #include #include #include #include #include #include #include // Elliptic integrals (complete and incomplete) of the second kind // Carlson, Numerische Mathematik, vol 33, 1 (1979) namespace boost { namespace math { template typename tools::promote_args::type ellint_2(T1 k, T2 phi, const Policy& pol); namespace detail{ template T ellint_e_imp(T k, const Policy& pol, const std::integral_constant&); template T ellint_e_imp(T k, const Policy& pol, const std::integral_constant&); template T ellint_e_imp(T k, const Policy& pol, const std::integral_constant&); // Elliptic integral (Legendre form) of the second kind template T ellint_e_imp(T phi, T k, const Policy& pol) { BOOST_MATH_STD_USING using namespace boost::math::tools; using namespace boost::math::constants; bool invert = false; if (phi == 0) return 0; if(phi < 0) { phi = fabs(phi); invert = true; } T result; if(phi >= tools::max_value()) { // Need to handle infinity as a special case: result = policies::raise_overflow_error("boost::math::ellint_e<%1%>(%1%,%1%)", nullptr, pol); } else if(phi > 1 / tools::epsilon()) { typedef std::integral_constant::value&& std::numeric_limits::digits && (std::numeric_limits::digits <= 54) ? 0 : std::is_floating_point::value && std::numeric_limits::digits && (std::numeric_limits::digits <= 64) ? 1 : 2 > precision_tag_type; // Phi is so large that phi%pi is necessarily zero (or garbage), // just return the second part of the duplication formula: result = 2 * phi * ellint_e_imp(k, pol, precision_tag_type()) / constants::pi(); } else if(k == 0) { return invert ? T(-phi) : phi; } else if(fabs(k) == 1) { // // For k = 1 ellipse actually turns to a line and every pi/2 in phi is exactly 1 in arc length // Periodicity though is in pi, curve follows sin(pi) for 0 <= phi <= pi/2 and then // 2 - sin(pi- phi) = 2 + sin(phi - pi) for pi/2 <= phi <= pi, so general form is: // // 2n + sin(phi - n * pi) ; |phi - n * pi| <= pi / 2 // T m = boost::math::round(phi / boost::math::constants::pi()); T remains = phi - m * boost::math::constants::pi(); T value = 2 * m + sin(remains); // negative arc length for negative phi return invert ? -value : value; } else { // Carlson's algorithm works only for |phi| <= pi/2, // use the integrand's periodicity to normalize phi // // Xiaogang's original code used a cast to long long here // but that fails if T has more digits than a long long, // so rewritten to use fmod instead: // T rphi = boost::math::tools::fmod_workaround(phi, T(constants::half_pi())); T m = boost::math::round((phi - rphi) / constants::half_pi()); int s = 1; if(boost::math::tools::fmod_workaround(m, T(2)) > T(0.5)) { m += 1; s = -1; rphi = constants::half_pi() - rphi; } T k2 = k * k; if(boost::math::pow<3>(rphi) * k2 / 6 < tools::epsilon() * fabs(rphi)) { // See http://functions.wolfram.com/EllipticIntegrals/EllipticE2/06/01/03/0001/ result = s * rphi; } else { // http://dlmf.nist.gov/19.25#E10 T sinp = sin(rphi); if (k2 * sinp * sinp >= 1) { return policies::raise_domain_error("boost::math::ellint_2<%1%>(%1%, %1%)", "The parameter k is out of range, got k = %1%", k, pol); } T cosp = cos(rphi); T c = 1 / (sinp * sinp); T cm1 = cosp * cosp / (sinp * sinp); // c - 1 result = s * ((1 - k2) * ellint_rf_imp(cm1, T(c - k2), c, pol) + k2 * (1 - k2) * ellint_rd(cm1, c, T(c - k2), pol) / 3 + k2 * sqrt(cm1 / (c * (c - k2)))); } if (m != 0) { typedef std::integral_constant::value&& std::numeric_limits::digits && (std::numeric_limits::digits <= 54) ? 0 : std::is_floating_point::value && std::numeric_limits::digits && (std::numeric_limits::digits <= 64) ? 1 : 2 > precision_tag_type; result += m * ellint_e_imp(k, pol, precision_tag_type()); } } return invert ? T(-result) : result; } // Complete elliptic integral (Legendre form) of the second kind template T ellint_e_imp(T k, const Policy& pol, std::integral_constant const&) { BOOST_MATH_STD_USING using namespace boost::math::tools; if (abs(k) > 1) { return policies::raise_domain_error("boost::math::ellint_e<%1%>(%1%)", "Got k = %1%, function requires |k| <= 1", k, pol); } if (abs(k) == 1) { return static_cast(1); } T x = 0; T t = k * k; T y = 1 - t; T z = 1; T value = 2 * ellint_rg_imp(x, y, z, pol); return value; } // // Special versions for double and 80-bit long double precision, // double precision versions use the coefficients from: // "Fast computation of complete elliptic integrals and Jacobian elliptic functions", // Celestial Mechanics and Dynamical Astronomy, April 2012. // // Higher precision coefficients for 80-bit long doubles can be calculated // using for example: // Table[N[SeriesCoefficient[ EllipticE [ m ], { m, 875/1000, i} ], 20], {i, 0, 24}] // and checking the value of the first neglected term with: // N[SeriesCoefficient[ EllipticE [ m ], { m, 875/1000, 24} ], 20] * (2.5/100)^24 // // For m > 0.9 we don't use the method of the paper above, but simply call our // existing routines. // template BOOST_MATH_FORCEINLINE T ellint_e_imp(T k, const Policy& pol, std::integral_constant const&) { using std::abs; using namespace boost::math::tools; T m = k * k; switch (static_cast(20 * m)) { case 0: case 1: //if (m < 0.1) { constexpr T coef[] = { static_cast(1.550973351780472328), -static_cast(0.400301020103198524), -static_cast(0.078498619442941939), -static_cast(0.034318853117591992), -static_cast(0.019718043317365499), -static_cast(0.013059507731993309), -static_cast(0.009442372874146547), -static_cast(0.007246728512402157), -static_cast(0.005807424012956090), -static_cast(0.004809187786009338), -static_cast(0.004086399233255150) }; return boost::math::tools::evaluate_polynomial(coef, m - static_cast(0.05)); } case 2: case 3: //else if (m < 0.2) { constexpr T coef[] = { static_cast(1.510121832092819728), -static_cast(0.417116333905867549), -static_cast(0.090123820404774569), -static_cast(0.043729944019084312), -static_cast(0.027965493064761785), -static_cast(0.020644781177568105), -static_cast(0.016650786739707238), -static_cast(0.014261960828842520), -static_cast(0.012759847429264803), -static_cast(0.011799303775587354), -static_cast(0.011197445703074968) }; return boost::math::tools::evaluate_polynomial(coef, m - static_cast(0.15)); } case 4: case 5: //else if (m < 0.3) { constexpr T coef[] = { static_cast(1.467462209339427155), -static_cast(0.436576290946337775), -static_cast(0.105155557666942554), -static_cast(0.057371843593241730), -static_cast(0.041391627727340220), -static_cast(0.034527728505280841), -static_cast(0.031495443512532783), -static_cast(0.030527000890325277), -static_cast(0.030916984019238900), -static_cast(0.032371395314758122), -static_cast(0.034789960386404158) }; return boost::math::tools::evaluate_polynomial(coef, m - static_cast(0.25)); } case 6: case 7: //else if (m < 0.4) { constexpr T coef[] = { static_cast(1.422691133490879171), -static_cast(0.459513519621048674), -static_cast(0.125250539822061878), -static_cast(0.078138545094409477), -static_cast(0.064714278472050002), -static_cast(0.062084339131730311), -static_cast(0.065197032815572477), -static_cast(0.072793895362578779), -static_cast(0.084959075171781003), -static_cast(0.102539850131045997), -static_cast(0.127053585157696036), -static_cast(0.160791120691274606) }; return boost::math::tools::evaluate_polynomial(coef, m - static_cast(0.35)); } case 8: case 9: //else if (m < 0.5) { constexpr T coef[] = { static_cast(1.375401971871116291), -static_cast(0.487202183273184837), -static_cast(0.153311701348540228), -static_cast(0.111849444917027833), -static_cast(0.108840952523135768), -static_cast(0.122954223120269076), -static_cast(0.152217163962035047), -static_cast(0.200495323642697339), -static_cast(0.276174333067751758), -static_cast(0.393513114304375851), -static_cast(0.575754406027879147), -static_cast(0.860523235727239756), -static_cast(1.308833205758540162) }; return boost::math::tools::evaluate_polynomial(coef, m - static_cast(0.45)); } case 10: case 11: //else if (m < 0.6) { constexpr T coef[] = { static_cast(1.325024497958230082), -static_cast(0.521727647557566767), -static_cast(0.194906430482126213), -static_cast(0.171623726822011264), -static_cast(0.202754652926419141), -static_cast(0.278798953118534762), -static_cast(0.420698457281005762), -static_cast(0.675948400853106021), -static_cast(1.136343121839229244), -static_cast(1.976721143954398261), -static_cast(3.531696773095722506), -static_cast(6.446753640156048150), -static_cast(11.97703130208884026) }; return boost::math::tools::evaluate_polynomial(coef, m - static_cast(0.55)); } case 12: case 13: //else if (m < 0.7) { constexpr T coef[] = { static_cast(1.270707479650149744), -static_cast(0.566839168287866583), -static_cast(0.262160793432492598), -static_cast(0.292244173533077419), -static_cast(0.440397840850423189), -static_cast(0.774947641381397458), -static_cast(1.498870837987561088), -static_cast(3.089708310445186667), -static_cast(6.667595903381001064), -static_cast(14.89436036517319078), -static_cast(34.18120574251449024), -static_cast(80.15895841905397306), -static_cast(191.3489480762984920), -static_cast(463.5938853480342030), -static_cast(1137.380822169360061) }; return boost::math::tools::evaluate_polynomial(coef, m - static_cast(0.65)); } case 14: case 15: //else if (m < 0.8) { constexpr T coef[] = { static_cast(1.211056027568459525), -static_cast(0.630306413287455807), -static_cast(0.387166409520669145), -static_cast(0.592278235311934603), -static_cast(1.237555584513049844), -static_cast(3.032056661745247199), -static_cast(8.181688221573590762), -static_cast(23.55507217389693250), -static_cast(71.04099935893064956), -static_cast(221.8796853192349888), -static_cast(712.1364793277635425), -static_cast(2336.125331440396407), -static_cast(7801.945954775964673), -static_cast(26448.19586059191933), -static_cast(90799.48341621365251), -static_cast(315126.0406449163424), -static_cast(1104011.344311591159) }; return boost::math::tools::evaluate_polynomial(coef, m - static_cast(0.75)); } case 16: //else if (m < 0.85) { constexpr T coef[] = { static_cast(1.161307152196282836), -static_cast(0.701100284555289548), -static_cast(0.580551474465437362), -static_cast(1.243693061077786614), -static_cast(3.679383613496634879), -static_cast(12.81590924337895775), -static_cast(49.25672530759985272), -static_cast(202.1818735434090269), -static_cast(869.8602699308701437), -static_cast(3877.005847313289571), -static_cast(17761.70710170939814), -static_cast(83182.69029154232061), -static_cast(396650.4505013548170), -static_cast(1920033.413682634405) }; return boost::math::tools::evaluate_polynomial(coef, m - static_cast(0.825)); } case 17: //else if (m < 0.90) { constexpr T coef[] = { static_cast(1.124617325119752213), -static_cast(0.770845056360909542), -static_cast(0.844794053644911362), -static_cast(2.490097309450394453), -static_cast(10.23971741154384360), -static_cast(49.74900546551479866), -static_cast(267.0986675195705196), -static_cast(1532.665883825229947), -static_cast(9222.313478526091951), -static_cast(57502.51612140314030), -static_cast(368596.1167416106063), -static_cast(2415611.088701091428), -static_cast(16120097.81581656797), -static_cast(109209938.5203089915), -static_cast(749380758.1942496220), -static_cast(5198725846.725541393), -static_cast(36409256888.12139973) }; return boost::math::tools::evaluate_polynomial(coef, m - static_cast(0.875)); } default: // // All cases where m > 0.9 // including all error handling: // return ellint_e_imp(k, pol, std::integral_constant()); } } template BOOST_MATH_FORCEINLINE T ellint_e_imp(T k, const Policy& pol, std::integral_constant const&) { using std::abs; using namespace boost::math::tools; T m = k * k; switch (static_cast(20 * m)) { case 0: case 1: //if (m < 0.1) { constexpr T coef[] = { 1.5509733517804723277L, -0.40030102010319852390L, -0.078498619442941939212L, -0.034318853117591992417L, -0.019718043317365499309L, -0.013059507731993309191L, -0.0094423728741465473894L, -0.0072467285124021568126L, -0.0058074240129560897940L, -0.0048091877860093381762L, -0.0040863992332551506768L, -0.0035450302604139562644L, -0.0031283511188028336315L }; return boost::math::tools::evaluate_polynomial(coef, m - 0.05L); } case 2: case 3: //else if (m < 0.2) { constexpr T coef[] = { 1.5101218320928197276L, -0.41711633390586754922L, -0.090123820404774568894L, -0.043729944019084311555L, -0.027965493064761784548L, -0.020644781177568105268L, -0.016650786739707238037L, -0.014261960828842519634L, -0.012759847429264802627L, -0.011799303775587354169L, -0.011197445703074968018L, -0.010850368064799902735L, -0.010696133481060989818L }; return boost::math::tools::evaluate_polynomial(coef, m - 0.15L); } case 4: case 5: //else if (m < 0.3L) { constexpr T coef[] = { 1.4674622093394271555L, -0.43657629094633777482L, -0.10515555766694255399L, -0.057371843593241729895L, -0.041391627727340220236L, -0.034527728505280841188L, -0.031495443512532782647L, -0.030527000890325277179L, -0.030916984019238900349L, -0.032371395314758122268L, -0.034789960386404158240L, -0.038182654612387881967L, -0.042636187648900252525L, -0.048302272505241634467 }; return boost::math::tools::evaluate_polynomial(coef, m - 0.25L); } case 6: case 7: //else if (m < 0.4L) { constexpr T coef[] = { 1.4226911334908791711L, -0.45951351962104867394L, -0.12525053982206187849L, -0.078138545094409477156L, -0.064714278472050001838L, -0.062084339131730310707L, -0.065197032815572476910L, -0.072793895362578779473L, -0.084959075171781003264L, -0.10253985013104599679L, -0.12705358515769603644L, -0.16079112069127460621L, -0.20705400012405941376L, -0.27053164884730888948L }; return boost::math::tools::evaluate_polynomial(coef, m - 0.35L); } case 8: case 9: //else if (m < 0.5L) { constexpr T coef[] = { 1.3754019718711162908L, -0.48720218327318483652L, -0.15331170134854022753L, -0.11184944491702783273L, -0.10884095252313576755L, -0.12295422312026907610L, -0.15221716396203504746L, -0.20049532364269733857L, -0.27617433306775175837L, -0.39351311430437585139L, -0.57575440602787914711L, -0.86052323572723975634L, -1.3088332057585401616L, -2.0200280559452241745L, -3.1566019548237606451L }; return boost::math::tools::evaluate_polynomial(coef, m - 0.45L); } case 10: case 11: //else if (m < 0.6L) { constexpr T coef[] = { 1.3250244979582300818L, -0.52172764755756676713L, -0.19490643048212621262L, -0.17162372682201126365L, -0.20275465292641914128L, -0.27879895311853476205L, -0.42069845728100576224L, -0.67594840085310602110L, -1.1363431218392292440L, -1.9767211439543982613L, -3.5316967730957225064L, -6.4467536401560481499L, -11.977031302088840261L, -22.581360948073964469L, -43.109479829481450573L, -83.186290908288807424L }; return boost::math::tools::evaluate_polynomial(coef, m - 0.55L); } case 12: case 13: //else if (m < 0.7L) { constexpr T coef[] = { 1.2707074796501497440L, -0.56683916828786658286L, -0.26216079343249259779L, -0.29224417353307741931L, -0.44039784085042318909L, -0.77494764138139745824L, -1.4988708379875610880L, -3.0897083104451866665L, -6.6675959033810010645L, -14.894360365173190775L, -34.181205742514490240L, -80.158958419053973056L, -191.34894807629849204L, -463.59388534803420301L, -1137.3808221693600606L, -2820.7073786352269339L, -7061.1382244658715621L, -17821.809331816437058L, -45307.849987201897801L }; return boost::math::tools::evaluate_polynomial(coef, m - 0.65L); } case 14: case 15: //else if (m < 0.8L) { constexpr T coef[] = { 1.2110560275684595248L, -0.63030641328745580709L, -0.38716640952066914514L, -0.59227823531193460257L, -1.2375555845130498445L, -3.0320566617452471986L, -8.1816882215735907624L, -23.555072173896932503L, -71.040999358930649565L, -221.87968531923498875L, -712.13647932776354253L, -2336.1253314403964072L, -7801.9459547759646726L, -26448.195860591919335L, -90799.483416213652512L, -315126.04064491634241L, -1.1040113443115911589e6L, -3.8998018348056769095e6L, -1.3876249116223745041e7L, -4.9694982823537861149e7L, -1.7900668836197342979e8L, -6.4817399873722371964e8L }; return boost::math::tools::evaluate_polynomial(coef, m - 0.75L); } case 16: //else if (m < 0.85L) { constexpr T coef[] = { 1.1613071521962828360L, -0.70110028455528954752L, -0.58055147446543736163L, -1.2436930610777866138L, -3.6793836134966348789L, -12.815909243378957753L, -49.256725307599852720L, -202.18187354340902693L, -869.86026993087014372L, -3877.0058473132895713L, -17761.707101709398174L, -83182.690291542320614L, -396650.45050135481698L, -1.9200334136826344054e6L, -9.4131321779500838352e6L, -4.6654858837335370627e7L, -2.3343549352617609390e8L, -1.1776928223045913454e9L, -5.9850851892915740401e9L, -3.0614702984618644983e10L }; return boost::math::tools::evaluate_polynomial(coef, m - 0.825L); } case 17: //else if (m < 0.90L) { constexpr T coef[] = { 1.1246173251197522132L, -0.77084505636090954218L, -0.84479405364491136236L, -2.4900973094503944527L, -10.239717411543843601L, -49.749005465514798660L, -267.09866751957051961L, -1532.6658838252299468L, -9222.3134785260919507L, -57502.516121403140303L, -368596.11674161060626L, -2.4156110887010914281e6L, -1.6120097815816567971e7L, -1.0920993852030899148e8L, -7.4938075819424962198e8L, -5.1987258467255413931e9L, -3.6409256888121399726e10L, -2.5711802891217393544e11L, -1.8290904062978796996e12L, -1.3096838781743248404e13L, -9.4325465851415135118e13L, -6.8291980829471896669e14L }; return boost::math::tools::evaluate_polynomial(coef, m - 0.875L); } default: // // All cases where m > 0.9 // including all error handling: // return ellint_e_imp(k, pol, std::integral_constant()); } } template BOOST_MATH_FORCEINLINE typename tools::promote_args::type ellint_2(T k, const Policy& pol, const std::true_type&) { typedef typename tools::promote_args::type result_type; typedef typename policies::evaluation::type value_type; typedef std::integral_constant::value&& std::numeric_limits::digits && (std::numeric_limits::digits <= 54) ? 0 : std::is_floating_point::value && std::numeric_limits::digits && (std::numeric_limits::digits <= 64) ? 1 : 2 > precision_tag_type; return policies::checked_narrowing_cast(detail::ellint_e_imp(static_cast(k), pol, precision_tag_type()), "boost::math::ellint_2<%1%>(%1%)"); } // Elliptic integral (Legendre form) of the second kind template BOOST_MATH_FORCEINLINE typename tools::promote_args::type ellint_2(T1 k, T2 phi, const std::false_type&) { return boost::math::ellint_2(k, phi, policies::policy<>()); } } // detail // Complete elliptic integral (Legendre form) of the second kind template BOOST_MATH_FORCEINLINE typename tools::promote_args::type ellint_2(T k) { return ellint_2(k, policies::policy<>()); } // Elliptic integral (Legendre form) of the second kind template BOOST_MATH_FORCEINLINE typename tools::promote_args::type ellint_2(T1 k, T2 phi) { typedef typename policies::is_policy::type tag_type; return detail::ellint_2(k, phi, tag_type()); } template BOOST_MATH_FORCEINLINE typename tools::promote_args::type ellint_2(T1 k, T2 phi, const Policy& pol) // LCOV_EXCL_LINE gcc misses this but sees the function body, strange! { typedef typename tools::promote_args::type result_type; typedef typename policies::evaluation::type value_type; return policies::checked_narrowing_cast(detail::ellint_e_imp(static_cast(phi), static_cast(k), pol), "boost::math::ellint_2<%1%>(%1%,%1%)"); } }} // namespaces #endif // BOOST_MATH_ELLINT_2_HPP