// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard. // Copyright (C) 2005-2011 Daniel James. // Copyright (C) 2022-2023 Christian Mazakas // Copyright (C) 2024 Joaquin M Lopez Munoz. // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // See http://www.boost.org/libs/unordered for documentation #ifndef BOOST_UNORDERED_UNORDERED_MAP_HPP_INCLUDED #define BOOST_UNORDERED_UNORDERED_MAP_HPP_INCLUDED #include <boost/config.hpp> #if defined(BOOST_HAS_PRAGMA_ONCE) #pragma once #endif #include <boost/unordered/detail/map.hpp> #include <boost/unordered/detail/serialize_fca_container.hpp> #include <boost/unordered/detail/throw_exception.hpp> #include <boost/unordered/detail/type_traits.hpp> #include <boost/container_hash/hash.hpp> #include <initializer_list> #if defined(BOOST_MSVC) #pragma warning(push) // conditional expression is constant #pragma warning(disable : 4127) #if BOOST_MSVC >= 1400 // the inline specifier cannot be used when a friend declaration refers to a // specialization of a function template #pragma warning(disable : 4396) #endif #endif namespace boost { namespace unordered { template <class K, class T, class H, class P, class A> class unordered_map { template <typename, typename, typename, typename, typename> friend class unordered_multimap; public: typedef K key_type; typedef T mapped_type; typedef std::pair<const K, T> value_type; typedef typename boost::unordered::detail::type_identity<H>::type hasher; typedef typename boost::unordered::detail::type_identity<P>::type key_equal; typedef typename boost::unordered::detail::type_identity<A>::type allocator_type; private: typedef boost::unordered::detail::map<A, K, T, H, P> types; typedef typename types::value_allocator_traits value_allocator_traits; typedef typename types::table table; public: typedef typename value_allocator_traits::pointer pointer; typedef typename value_allocator_traits::const_pointer const_pointer; typedef value_type& reference; typedef value_type const& const_reference; typedef std::size_t size_type; typedef std::ptrdiff_t difference_type; typedef typename table::iterator iterator; typedef typename table::c_iterator const_iterator; typedef typename table::l_iterator local_iterator; typedef typename table::cl_iterator const_local_iterator; typedef typename types::node_type node_type; typedef typename types::insert_return_type insert_return_type; private: table table_; public: // constructors unordered_map(); explicit unordered_map(size_type, const hasher& = hasher(), const key_equal& = key_equal(), const allocator_type& = allocator_type()); template <class InputIt> unordered_map(InputIt, InputIt, size_type = boost::unordered::detail::default_bucket_count, const hasher& = hasher(), const key_equal& = key_equal(), const allocator_type& = allocator_type()); unordered_map(unordered_map const&); unordered_map(unordered_map&& other) noexcept(table::nothrow_move_constructible) : table_(other.table_, boost::unordered::detail::move_tag()) { // The move is done in table_ } explicit unordered_map(allocator_type const&); unordered_map(unordered_map const&, allocator_type const&); unordered_map(unordered_map&&, allocator_type const&); unordered_map(std::initializer_list<value_type>, size_type = boost::unordered::detail::default_bucket_count, const hasher& = hasher(), const key_equal& l = key_equal(), const allocator_type& = allocator_type()); explicit unordered_map(size_type, const allocator_type&); explicit unordered_map(size_type, const hasher&, const allocator_type&); template <class InputIterator> unordered_map(InputIterator, InputIterator, const allocator_type&); template <class InputIt> unordered_map(InputIt, InputIt, size_type, const allocator_type&); template <class InputIt> unordered_map( InputIt, InputIt, size_type, const hasher&, const allocator_type&); unordered_map(std::initializer_list<value_type>, const allocator_type&); unordered_map( std::initializer_list<value_type>, size_type, const allocator_type&); unordered_map(std::initializer_list<value_type>, size_type, const hasher&, const allocator_type&); // Destructor ~unordered_map() noexcept; // Assign unordered_map& operator=(unordered_map const& x) { table_.assign(x.table_, std::true_type()); return *this; } unordered_map& operator=(unordered_map&& x) noexcept(value_allocator_traits::is_always_equal::value&& std::is_nothrow_move_assignable<H>::value&& std::is_nothrow_move_assignable<P>::value) { table_.move_assign(x.table_, std::true_type()); return *this; } unordered_map& operator=(std::initializer_list<value_type>); allocator_type get_allocator() const noexcept { return allocator_type(table_.node_alloc()); } // // iterators iterator begin() noexcept { return table_.begin(); } const_iterator begin() const noexcept { return const_iterator(table_.begin()); } iterator end() noexcept { return iterator(); } const_iterator end() const noexcept { return const_iterator(); } const_iterator cbegin() const noexcept { return const_iterator(table_.begin()); } const_iterator cend() const noexcept { return const_iterator(); } // size and capacity BOOST_ATTRIBUTE_NODISCARD bool empty() const noexcept { return table_.size_ == 0; } size_type size() const noexcept { return table_.size_; } size_type max_size() const noexcept; // emplace template <class... Args> std::pair<iterator, bool> emplace(Args&&... args) { return table_.emplace_unique( table::extractor::extract(std::forward<Args>(args)...), std::forward<Args>(args)...); } template <class... Args> iterator emplace_hint(const_iterator hint, Args&&... args) { return table_.emplace_hint_unique(hint, table::extractor::extract(std::forward<Args>(args)...), std::forward<Args>(args)...); } std::pair<iterator, bool> insert(value_type const& x) { return this->emplace(x); } std::pair<iterator, bool> insert(value_type&& x) { return this->emplace(std::move(x)); } template <class P2> typename boost::enable_if<std::is_constructible<value_type, P2&&>, std::pair<iterator, bool> >::type insert(P2&& obj) { return this->emplace(std::forward<P2>(obj)); } iterator insert(const_iterator hint, value_type const& x) { return this->emplace_hint(hint, x); } iterator insert(const_iterator hint, value_type&& x) { return this->emplace_hint(hint, std::move(x)); } template <class P2> typename boost::enable_if<std::is_constructible<value_type, P2&&>, iterator>::type insert(const_iterator hint, P2&& obj) { return this->emplace_hint(hint, std::forward<P2>(obj)); } template <class InputIt> void insert(InputIt, InputIt); void insert(std::initializer_list<value_type>); // extract node_type extract(const_iterator position) { return node_type( table_.extract_by_iterator_unique(position), allocator_type(table_.node_alloc())); } node_type extract(const key_type& k) { return node_type( table_.extract_by_key_impl(k), allocator_type(table_.node_alloc())); } template <class Key> typename boost::enable_if_c< detail::transparent_non_iterable<Key, unordered_map>::value, node_type>::type extract(Key&& k) { return node_type( table_.extract_by_key_impl(std::forward<Key>(k)), allocator_type(table_.node_alloc())); } insert_return_type insert(node_type&& np) { insert_return_type result; table_.move_insert_node_type_unique((node_type&)np, result); return result; } iterator insert(const_iterator hint, node_type&& np) { return table_.move_insert_node_type_with_hint_unique(hint, np); } template <class... Args> std::pair<iterator, bool> try_emplace(key_type const& k, Args&&... args) { return table_.try_emplace_unique(k, std::forward<Args>(args)...); } template <class... Args> std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args) { return table_.try_emplace_unique( std::move(k), std::forward<Args>(args)...); } template <class Key, class... Args> typename boost::enable_if_c< detail::transparent_non_iterable<Key, unordered_map>::value, std::pair<iterator, bool> >::type try_emplace(Key&& k, Args&&... args) { return table_.try_emplace_unique( std::forward<Key>(k), std::forward<Args>(args)...); } template <class... Args> iterator try_emplace( const_iterator hint, key_type const& k, Args&&... args) { return table_.try_emplace_hint_unique( hint, k, std::forward<Args>(args)...); } template <class... Args> iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args) { return table_.try_emplace_hint_unique( hint, std::move(k), std::forward<Args>(args)...); } template <class Key, class... Args> typename boost::enable_if_c< detail::transparent_non_iterable<Key, unordered_map>::value, iterator>::type try_emplace(const_iterator hint, Key&& k, Args&&... args) { return table_.try_emplace_hint_unique( hint, std::forward<Key>(k), std::forward<Args>(args)...); } template <class M> std::pair<iterator, bool> insert_or_assign(key_type const& k, M&& obj) { return table_.insert_or_assign_unique(k, std::forward<M>(obj)); } template <class M> std::pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj) { return table_.insert_or_assign_unique( std::move(k), std::forward<M>(obj)); } template <class Key, class M> typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value, std::pair<iterator, bool> >::type insert_or_assign(Key&& k, M&& obj) { return table_.insert_or_assign_unique( std::forward<Key>(k), std::forward<M>(obj)); } template <class M> iterator insert_or_assign(const_iterator, key_type const& k, M&& obj) { return table_.insert_or_assign_unique(k, std::forward<M>(obj)).first; } template <class M> iterator insert_or_assign(const_iterator, key_type&& k, M&& obj) { return table_ .insert_or_assign_unique(std::move(k), std::forward<M>(obj)) .first; } template <class Key, class M> typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value, iterator>::type insert_or_assign(const_iterator, Key&& k, M&& obj) { return table_ .insert_or_assign_unique(std::forward<Key>(k), std::forward<M>(obj)) .first; } iterator erase(iterator); iterator erase(const_iterator); size_type erase(const key_type&); iterator erase(const_iterator, const_iterator); template <class Key> typename boost::enable_if_c< detail::transparent_non_iterable<Key, unordered_map>::value, size_type>::type erase(Key&& k) { return table_.erase_key_unique_impl(std::forward<Key>(k)); } BOOST_UNORDERED_DEPRECATED("Use erase instead") void quick_erase(const_iterator it) { erase(it); } BOOST_UNORDERED_DEPRECATED("Use erase instead") void erase_return_void(const_iterator it) { erase(it); } void swap(unordered_map&) noexcept(value_allocator_traits::is_always_equal::value&& boost::unordered::detail::is_nothrow_swappable<H>::value&& boost::unordered::detail::is_nothrow_swappable<P>::value); void clear() noexcept { table_.clear_impl(); } template <typename H2, typename P2> void merge(boost::unordered_map<K, T, H2, P2, A>& source); template <typename H2, typename P2> void merge(boost::unordered_map<K, T, H2, P2, A>&& source); template <typename H2, typename P2> void merge(boost::unordered_multimap<K, T, H2, P2, A>& source); template <typename H2, typename P2> void merge(boost::unordered_multimap<K, T, H2, P2, A>&& source); // observers hasher hash_function() const; key_equal key_eq() const; // lookup iterator find(const key_type&); const_iterator find(const key_type&) const; template <class Key> typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value, iterator>::type find(const Key& key) { return table_.find(key); } template <class Key> typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value, const_iterator>::type find(const Key& key) const { return const_iterator(table_.find(key)); } template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate> iterator find(CompatibleKey const&, CompatibleHash const&, CompatiblePredicate const&); template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate> const_iterator find(CompatibleKey const&, CompatibleHash const&, CompatiblePredicate const&) const; bool contains(const key_type& k) const { return table_.find(k) != this->end(); } template <class Key> typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value, bool>::type contains(const Key& k) const { return table_.find(k) != this->end(); } size_type count(const key_type&) const; template <class Key> typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value, size_type>::type count(const Key& k) const { return (table_.find(k) != this->end() ? 1 : 0); } std::pair<iterator, iterator> equal_range(const key_type&); std::pair<const_iterator, const_iterator> equal_range( const key_type&) const; template <class Key> typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value, std::pair<iterator, iterator> >::type equal_range(const Key& key) { iterator first = table_.find(key); iterator last = first; if (last != this->end()) { ++last; } return std::make_pair(first, last); } template <class Key> typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value, std::pair<const_iterator, const_iterator> >::type equal_range(const Key& key) const { iterator first = table_.find(key); iterator last = first; if (last != this->end()) { ++last; } return std::make_pair(first, last); } mapped_type& operator[](const key_type&); mapped_type& operator[](key_type&&); template <class Key> typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value, mapped_type&>::type operator[](Key&& k); mapped_type& at(const key_type&); mapped_type const& at(const key_type&) const; template <class Key> typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value, mapped_type&>::type at(Key&& k); template <class Key> typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value, mapped_type const&>::type at(Key&& k) const; // bucket interface size_type bucket_count() const noexcept { return table_.bucket_count(); } size_type max_bucket_count() const noexcept { return table_.max_bucket_count(); } size_type bucket_size(size_type) const; size_type bucket(const key_type& k) const { return table_.hash_to_bucket(table_.hash(k)); } template <class Key> typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value, size_type>::type bucket(Key&& k) const { return table_.hash_to_bucket(table_.hash(std::forward<Key>(k))); } local_iterator begin(size_type n) { return table_.begin(n); } const_local_iterator begin(size_type n) const { return const_local_iterator(table_.begin(n)); } local_iterator end(size_type) { return local_iterator(); } const_local_iterator end(size_type) const { return const_local_iterator(); } const_local_iterator cbegin(size_type n) const { return const_local_iterator(table_.begin(n)); } const_local_iterator cend(size_type) const { return const_local_iterator(); } // hash policy float load_factor() const noexcept; float max_load_factor() const noexcept { return table_.mlf_; } void max_load_factor(float) noexcept; void rehash(size_type); void reserve(size_type); #if !BOOST_WORKAROUND(BOOST_BORLANDC, < 0x0582) friend bool operator== <K, T, H, P, A>(unordered_map const&, unordered_map const&); friend bool operator!= <K, T, H, P, A>(unordered_map const&, unordered_map const&); #endif }; // class template unordered_map template <class Archive, class K, class T, class H, class P, class A> void serialize( Archive& ar, unordered_map<K, T, H, P, A>& m, unsigned int version) { detail::serialize_fca_container(ar, m, version); } #if BOOST_UNORDERED_TEMPLATE_DEDUCTION_GUIDES template <class InputIterator, class Hash = boost::hash<boost::unordered::detail::iter_key_t<InputIterator> >, class Pred = std::equal_to<boost::unordered::detail::iter_key_t<InputIterator> >, class Allocator = std::allocator< boost::unordered::detail::iter_to_alloc_t<InputIterator> >, class = std::enable_if_t<detail::is_input_iterator_v<InputIterator> >, class = std::enable_if_t<detail::is_hash_v<Hash> >, class = std::enable_if_t<detail::is_pred_v<Pred> >, class = std::enable_if_t<detail::is_allocator_v<Allocator> > > unordered_map(InputIterator, InputIterator, std::size_t = boost::unordered::detail::default_bucket_count, Hash = Hash(), Pred = Pred(), Allocator = Allocator()) -> unordered_map<boost::unordered::detail::iter_key_t<InputIterator>, boost::unordered::detail::iter_val_t<InputIterator>, Hash, Pred, Allocator>; template <class Key, class T, class Hash = boost::hash<std::remove_const_t<Key> >, class Pred = std::equal_to<std::remove_const_t<Key> >, class Allocator = std::allocator<std::pair<const Key, T> >, class = std::enable_if_t<detail::is_hash_v<Hash> >, class = std::enable_if_t<detail::is_pred_v<Pred> >, class = std::enable_if_t<detail::is_allocator_v<Allocator> > > unordered_map(std::initializer_list<std::pair<Key, T> >, std::size_t = boost::unordered::detail::default_bucket_count, Hash = Hash(), Pred = Pred(), Allocator = Allocator()) -> unordered_map<std::remove_const_t<Key>, T, Hash, Pred, Allocator>; template <class InputIterator, class Allocator, class = std::enable_if_t<detail::is_input_iterator_v<InputIterator> >, class = std::enable_if_t<detail::is_allocator_v<Allocator> > > unordered_map(InputIterator, InputIterator, std::size_t, Allocator) -> unordered_map<boost::unordered::detail::iter_key_t<InputIterator>, boost::unordered::detail::iter_val_t<InputIterator>, boost::hash<boost::unordered::detail::iter_key_t<InputIterator> >, std::equal_to<boost::unordered::detail::iter_key_t<InputIterator> >, Allocator>; template <class InputIterator, class Allocator, class = std::enable_if_t<detail::is_input_iterator_v<InputIterator> >, class = std::enable_if_t<detail::is_allocator_v<Allocator> > > unordered_map(InputIterator, InputIterator, Allocator) -> unordered_map<boost::unordered::detail::iter_key_t<InputIterator>, boost::unordered::detail::iter_val_t<InputIterator>, boost::hash<boost::unordered::detail::iter_key_t<InputIterator> >, std::equal_to<boost::unordered::detail::iter_key_t<InputIterator> >, Allocator>; template <class InputIterator, class Hash, class Allocator, class = std::enable_if_t<detail::is_hash_v<Hash> >, class = std::enable_if_t<detail::is_input_iterator_v<InputIterator> >, class = std::enable_if_t<detail::is_allocator_v<Allocator> > > unordered_map(InputIterator, InputIterator, std::size_t, Hash, Allocator) -> unordered_map<boost::unordered::detail::iter_key_t<InputIterator>, boost::unordered::detail::iter_val_t<InputIterator>, Hash, std::equal_to<boost::unordered::detail::iter_key_t<InputIterator> >, Allocator>; template <class Key, class T, class Allocator, class = std::enable_if_t<detail::is_allocator_v<Allocator> > > unordered_map(std::initializer_list<std::pair<Key, T> >, std::size_t, Allocator) -> unordered_map<std::remove_const_t<Key>, T, boost::hash<std::remove_const_t<Key> >, std::equal_to<std::remove_const_t<Key> >, Allocator>; template <class Key, class T, class Allocator, class = std::enable_if_t<detail::is_allocator_v<Allocator> > > unordered_map(std::initializer_list<std::pair<Key, T> >, Allocator) -> unordered_map<std::remove_const_t<Key>, T, boost::hash<std::remove_const_t<Key> >, std::equal_to<std::remove_const_t<Key> >, Allocator>; template <class Key, class T, class Hash, class Allocator, class = std::enable_if_t<detail::is_hash_v<Hash> >, class = std::enable_if_t<detail::is_allocator_v<Allocator> > > unordered_map(std::initializer_list<std::pair<Key, T> >, std::size_t, Hash, Allocator) -> unordered_map<std::remove_const_t<Key>, T, Hash, std::equal_to<std::remove_const_t<Key> >, Allocator>; #endif template <class K, class T, class H, class P, class A> class unordered_multimap { template <typename, typename, typename, typename, typename> friend class unordered_map; public: typedef K key_type; typedef T mapped_type; typedef std::pair<const K, T> value_type; typedef typename boost::unordered::detail::type_identity<H>::type hasher; typedef typename boost::unordered::detail::type_identity<P>::type key_equal; typedef typename boost::unordered::detail::type_identity<A>::type allocator_type; private: typedef boost::unordered::detail::map<A, K, T, H, P> types; typedef typename types::value_allocator_traits value_allocator_traits; typedef typename types::table table; public: typedef typename value_allocator_traits::pointer pointer; typedef typename value_allocator_traits::const_pointer const_pointer; typedef value_type& reference; typedef value_type const& const_reference; typedef std::size_t size_type; typedef std::ptrdiff_t difference_type; typedef typename table::iterator iterator; typedef typename table::c_iterator const_iterator; typedef typename table::l_iterator local_iterator; typedef typename table::cl_iterator const_local_iterator; typedef typename types::node_type node_type; private: table table_; public: // constructors unordered_multimap(); explicit unordered_multimap(size_type, const hasher& = hasher(), const key_equal& = key_equal(), const allocator_type& = allocator_type()); template <class InputIt> unordered_multimap(InputIt, InputIt, size_type = boost::unordered::detail::default_bucket_count, const hasher& = hasher(), const key_equal& = key_equal(), const allocator_type& = allocator_type()); unordered_multimap(unordered_multimap const&); unordered_multimap(unordered_multimap&& other) noexcept(table::nothrow_move_constructible) : table_(other.table_, boost::unordered::detail::move_tag()) { // The move is done in table_ } explicit unordered_multimap(allocator_type const&); unordered_multimap(unordered_multimap const&, allocator_type const&); unordered_multimap(unordered_multimap&&, allocator_type const&); unordered_multimap(std::initializer_list<value_type>, size_type = boost::unordered::detail::default_bucket_count, const hasher& = hasher(), const key_equal& l = key_equal(), const allocator_type& = allocator_type()); explicit unordered_multimap(size_type, const allocator_type&); explicit unordered_multimap( size_type, const hasher&, const allocator_type&); template <class InputIterator> unordered_multimap(InputIterator, InputIterator, const allocator_type&); template <class InputIt> unordered_multimap(InputIt, InputIt, size_type, const allocator_type&); template <class InputIt> unordered_multimap( InputIt, InputIt, size_type, const hasher&, const allocator_type&); unordered_multimap( std::initializer_list<value_type>, const allocator_type&); unordered_multimap( std::initializer_list<value_type>, size_type, const allocator_type&); unordered_multimap(std::initializer_list<value_type>, size_type, const hasher&, const allocator_type&); // Destructor ~unordered_multimap() noexcept; // Assign unordered_multimap& operator=(unordered_multimap const& x) { table_.assign(x.table_, std::false_type()); return *this; } unordered_multimap& operator=(unordered_multimap&& x) noexcept(value_allocator_traits::is_always_equal::value&& std::is_nothrow_move_assignable<H>::value&& std::is_nothrow_move_assignable<P>::value) { table_.move_assign(x.table_, std::false_type()); return *this; } unordered_multimap& operator=(std::initializer_list<value_type>); allocator_type get_allocator() const noexcept { return allocator_type(table_.node_alloc()); } // iterators iterator begin() noexcept { return iterator(table_.begin()); } const_iterator begin() const noexcept { return const_iterator(table_.begin()); } iterator end() noexcept { return iterator(); } const_iterator end() const noexcept { return const_iterator(); } const_iterator cbegin() const noexcept { return const_iterator(table_.begin()); } const_iterator cend() const noexcept { return const_iterator(); } // size and capacity BOOST_ATTRIBUTE_NODISCARD bool empty() const noexcept { return table_.size_ == 0; } size_type size() const noexcept { return table_.size_; } size_type max_size() const noexcept; // emplace template <class... Args> iterator emplace(Args&&... args) { return iterator(table_.emplace_equiv( boost::unordered::detail::func::construct_node_from_args( table_.node_alloc(), std::forward<Args>(args)...))); } template <class... Args> iterator emplace_hint(const_iterator hint, Args&&... args) { return iterator(table_.emplace_hint_equiv( hint, boost::unordered::detail::func::construct_node_from_args( table_.node_alloc(), std::forward<Args>(args)...))); } iterator insert(value_type const& x) { return this->emplace(x); } iterator insert(value_type&& x) { return this->emplace(std::move(x)); } template <class P2> typename boost::enable_if<std::is_constructible<value_type, P2&&>, iterator>::type insert(P2&& obj) { return this->emplace(std::forward<P2>(obj)); } iterator insert(const_iterator hint, value_type const& x) { return this->emplace_hint(hint, x); } iterator insert(const_iterator hint, value_type&& x) { return this->emplace_hint(hint, std::move(x)); } template <class P2> typename boost::enable_if<std::is_constructible<value_type, P2&&>, iterator>::type insert(const_iterator hint, P2&& obj) { return this->emplace_hint(hint, std::forward<P2>(obj)); } template <class InputIt> void insert(InputIt, InputIt); void insert(std::initializer_list<value_type>); // extract node_type extract(const_iterator position) { return node_type( table_.extract_by_iterator_equiv(position), table_.node_alloc()); } node_type extract(const key_type& k) { return node_type(table_.extract_by_key_impl(k), table_.node_alloc()); } template <class Key> typename boost::enable_if_c< detail::transparent_non_iterable<Key, unordered_multimap>::value, node_type>::type extract(const Key& k) { return node_type(table_.extract_by_key_impl(k), table_.node_alloc()); } iterator insert(node_type&& np) { return table_.move_insert_node_type_equiv(np); } iterator insert(const_iterator hint, node_type&& np) { return table_.move_insert_node_type_with_hint_equiv(hint, np); } iterator erase(iterator); iterator erase(const_iterator); size_type erase(const key_type&); iterator erase(const_iterator, const_iterator); template <class Key> typename boost::enable_if_c< detail::transparent_non_iterable<Key, unordered_multimap>::value, size_type>::type erase(Key&& k) { return table_.erase_key_equiv_impl(std::forward<Key>(k)); } BOOST_UNORDERED_DEPRECATED("Use erase instead") void quick_erase(const_iterator it) { erase(it); } BOOST_UNORDERED_DEPRECATED("Use erase instead") void erase_return_void(const_iterator it) { erase(it); } void swap(unordered_multimap&) noexcept(value_allocator_traits::is_always_equal::value&& boost::unordered::detail::is_nothrow_swappable<H>::value&& boost::unordered::detail::is_nothrow_swappable<P>::value); void clear() noexcept { table_.clear_impl(); } template <typename H2, typename P2> void merge(boost::unordered_multimap<K, T, H2, P2, A>& source); template <typename H2, typename P2> void merge(boost::unordered_multimap<K, T, H2, P2, A>&& source); template <typename H2, typename P2> void merge(boost::unordered_map<K, T, H2, P2, A>& source); template <typename H2, typename P2> void merge(boost::unordered_map<K, T, H2, P2, A>&& source); // observers hasher hash_function() const; key_equal key_eq() const; // lookup iterator find(const key_type&); const_iterator find(const key_type&) const; template <class Key> typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value, iterator>::type find(const Key& key) { return table_.find(key); } template <class Key> typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value, const_iterator>::type find(const Key& key) const { return const_iterator(table_.find(key)); } template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate> iterator find(CompatibleKey const&, CompatibleHash const&, CompatiblePredicate const&); template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate> const_iterator find(CompatibleKey const&, CompatibleHash const&, CompatiblePredicate const&) const; bool contains(key_type const& k) const { return table_.find(k) != this->end(); } template <class Key> typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value, bool>::type contains(const Key& k) const { return table_.find(k) != this->end(); } size_type count(const key_type&) const; template <class Key> typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value, size_type>::type count(const Key& k) const { return table_.group_count(k); } std::pair<iterator, iterator> equal_range(const key_type&); std::pair<const_iterator, const_iterator> equal_range( const key_type&) const; template <class Key> typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value, std::pair<iterator, iterator> >::type equal_range(const Key& key) { iterator p = table_.find(key); return std::make_pair(p, table_.next_group(key, p)); } template <class Key> typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value, std::pair<const_iterator, const_iterator> >::type equal_range(const Key& key) const { iterator p = table_.find(key); return std::make_pair( const_iterator(p), const_iterator(table_.next_group(key, p))); } // bucket interface size_type bucket_count() const noexcept { return table_.bucket_count(); } size_type max_bucket_count() const noexcept { return table_.max_bucket_count(); } size_type bucket_size(size_type) const; size_type bucket(const key_type& k) const { return table_.hash_to_bucket(table_.hash(k)); } template <class Key> typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value, size_type>::type bucket(Key&& k) const { return table_.hash_to_bucket(table_.hash(std::forward<Key>(k))); } local_iterator begin(size_type n) { return local_iterator(table_.begin(n)); } const_local_iterator begin(size_type n) const { return const_local_iterator(table_.begin(n)); } local_iterator end(size_type) { return local_iterator(); } const_local_iterator end(size_type) const { return const_local_iterator(); } const_local_iterator cbegin(size_type n) const { return const_local_iterator(table_.begin(n)); } const_local_iterator cend(size_type) const { return const_local_iterator(); } // hash policy float load_factor() const noexcept; float max_load_factor() const noexcept { return table_.mlf_; } void max_load_factor(float) noexcept; void rehash(size_type); void reserve(size_type); #if !BOOST_WORKAROUND(BOOST_BORLANDC, < 0x0582) friend bool operator== <K, T, H, P, A>(unordered_multimap const&, unordered_multimap const&); friend bool operator!= <K, T, H, P, A>(unordered_multimap const&, unordered_multimap const&); #endif }; // class template unordered_multimap template <class Archive, class K, class T, class H, class P, class A> void serialize( Archive& ar, unordered_multimap<K, T, H, P, A>& m, unsigned int version) { detail::serialize_fca_container(ar, m, version); } #if BOOST_UNORDERED_TEMPLATE_DEDUCTION_GUIDES template <class InputIterator, class Hash = boost::hash<boost::unordered::detail::iter_key_t<InputIterator> >, class Pred = std::equal_to<boost::unordered::detail::iter_key_t<InputIterator> >, class Allocator = std::allocator< boost::unordered::detail::iter_to_alloc_t<InputIterator> >, class = std::enable_if_t<detail::is_input_iterator_v<InputIterator> >, class = std::enable_if_t<detail::is_hash_v<Hash> >, class = std::enable_if_t<detail::is_pred_v<Pred> >, class = std::enable_if_t<detail::is_allocator_v<Allocator> > > unordered_multimap(InputIterator, InputIterator, std::size_t = boost::unordered::detail::default_bucket_count, Hash = Hash(), Pred = Pred(), Allocator = Allocator()) -> unordered_multimap<boost::unordered::detail::iter_key_t<InputIterator>, boost::unordered::detail::iter_val_t<InputIterator>, Hash, Pred, Allocator>; template <class Key, class T, class Hash = boost::hash<std::remove_const_t<Key> >, class Pred = std::equal_to<std::remove_const_t<Key> >, class Allocator = std::allocator<std::pair<const Key, T> >, class = std::enable_if_t<detail::is_hash_v<Hash> >, class = std::enable_if_t<detail::is_pred_v<Pred> >, class = std::enable_if_t<detail::is_allocator_v<Allocator> > > unordered_multimap(std::initializer_list<std::pair<Key, T> >, std::size_t = boost::unordered::detail::default_bucket_count, Hash = Hash(), Pred = Pred(), Allocator = Allocator()) -> unordered_multimap<std::remove_const_t<Key>, T, Hash, Pred, Allocator>; template <class InputIterator, class Allocator, class = std::enable_if_t<detail::is_input_iterator_v<InputIterator> >, class = std::enable_if_t<detail::is_allocator_v<Allocator> > > unordered_multimap(InputIterator, InputIterator, std::size_t, Allocator) -> unordered_multimap<boost::unordered::detail::iter_key_t<InputIterator>, boost::unordered::detail::iter_val_t<InputIterator>, boost::hash<boost::unordered::detail::iter_key_t<InputIterator> >, std::equal_to<boost::unordered::detail::iter_key_t<InputIterator> >, Allocator>; template <class InputIterator, class Allocator, class = std::enable_if_t<detail::is_input_iterator_v<InputIterator> >, class = std::enable_if_t<detail::is_allocator_v<Allocator> > > unordered_multimap(InputIterator, InputIterator, Allocator) -> unordered_multimap<boost::unordered::detail::iter_key_t<InputIterator>, boost::unordered::detail::iter_val_t<InputIterator>, boost::hash<boost::unordered::detail::iter_key_t<InputIterator> >, std::equal_to<boost::unordered::detail::iter_key_t<InputIterator> >, Allocator>; template <class InputIterator, class Hash, class Allocator, class = std::enable_if_t<detail::is_hash_v<Hash> >, class = std::enable_if_t<detail::is_input_iterator_v<InputIterator> >, class = std::enable_if_t<detail::is_allocator_v<Allocator> > > unordered_multimap( InputIterator, InputIterator, std::size_t, Hash, Allocator) -> unordered_multimap<boost::unordered::detail::iter_key_t<InputIterator>, boost::unordered::detail::iter_val_t<InputIterator>, Hash, std::equal_to<boost::unordered::detail::iter_key_t<InputIterator> >, Allocator>; template <class Key, class T, class Allocator, class = std::enable_if_t<detail::is_allocator_v<Allocator> > > unordered_multimap(std::initializer_list<std::pair<Key, T> >, std::size_t, Allocator) -> unordered_multimap<std::remove_const_t<Key>, T, boost::hash<std::remove_const_t<Key> >, std::equal_to<std::remove_const_t<Key> >, Allocator>; template <class Key, class T, class Allocator, class = std::enable_if_t<detail::is_allocator_v<Allocator> > > unordered_multimap(std::initializer_list<std::pair<Key, T> >, Allocator) -> unordered_multimap<std::remove_const_t<Key>, T, boost::hash<std::remove_const_t<Key> >, std::equal_to<std::remove_const_t<Key> >, Allocator>; template <class Key, class T, class Hash, class Allocator, class = std::enable_if_t<detail::is_hash_v<Hash> >, class = std::enable_if_t<detail::is_allocator_v<Allocator> > > unordered_multimap(std::initializer_list<std::pair<Key, T> >, std::size_t, Hash, Allocator) -> unordered_multimap<std::remove_const_t<Key>, T, Hash, std::equal_to<std::remove_const_t<Key> >, Allocator>; #endif //////////////////////////////////////////////////////////////////////////// template <class K, class T, class H, class P, class A> unordered_map<K, T, H, P, A>::unordered_map() { } template <class K, class T, class H, class P, class A> unordered_map<K, T, H, P, A>::unordered_map(size_type n, const hasher& hf, const key_equal& eql, const allocator_type& a) : table_(n, hf, eql, a) { } template <class K, class T, class H, class P, class A> template <class InputIt> unordered_map<K, T, H, P, A>::unordered_map(InputIt f, InputIt l, size_type n, const hasher& hf, const key_equal& eql, const allocator_type& a) : table_(boost::unordered::detail::initial_size(f, l, n), hf, eql, a) { this->insert(f, l); } template <class K, class T, class H, class P, class A> unordered_map<K, T, H, P, A>::unordered_map(unordered_map const& other) : table_(other.table_, unordered_map::value_allocator_traits:: select_on_container_copy_construction(other.get_allocator())) { if (other.size()) { table_.copy_buckets(other.table_, std::true_type()); } } template <class K, class T, class H, class P, class A> unordered_map<K, T, H, P, A>::unordered_map(allocator_type const& a) : table_(boost::unordered::detail::default_bucket_count, hasher(), key_equal(), a) { } template <class K, class T, class H, class P, class A> unordered_map<K, T, H, P, A>::unordered_map( unordered_map const& other, allocator_type const& a) : table_(other.table_, a) { if (other.table_.size_) { table_.copy_buckets(other.table_, std::true_type()); } } template <class K, class T, class H, class P, class A> unordered_map<K, T, H, P, A>::unordered_map( unordered_map&& other, allocator_type const& a) : table_(other.table_, a, boost::unordered::detail::move_tag()) { table_.move_construct_buckets(other.table_); } template <class K, class T, class H, class P, class A> unordered_map<K, T, H, P, A>::unordered_map( std::initializer_list<value_type> list, size_type n, const hasher& hf, const key_equal& eql, const allocator_type& a) : table_( boost::unordered::detail::initial_size(list.begin(), list.end(), n), hf, eql, a) { this->insert(list.begin(), list.end()); } template <class K, class T, class H, class P, class A> unordered_map<K, T, H, P, A>::unordered_map( size_type n, const allocator_type& a) : table_(n, hasher(), key_equal(), a) { } template <class K, class T, class H, class P, class A> unordered_map<K, T, H, P, A>::unordered_map( size_type n, const hasher& hf, const allocator_type& a) : table_(n, hf, key_equal(), a) { } template <class K, class T, class H, class P, class A> template <class InputIterator> unordered_map<K, T, H, P, A>::unordered_map( InputIterator f, InputIterator l, const allocator_type& a) : table_(boost::unordered::detail::initial_size( f, l, detail::default_bucket_count), hasher(), key_equal(), a) { this->insert(f, l); } template <class K, class T, class H, class P, class A> template <class InputIt> unordered_map<K, T, H, P, A>::unordered_map( InputIt f, InputIt l, size_type n, const allocator_type& a) : table_(boost::unordered::detail::initial_size(f, l, n), hasher(), key_equal(), a) { this->insert(f, l); } template <class K, class T, class H, class P, class A> template <class InputIt> unordered_map<K, T, H, P, A>::unordered_map(InputIt f, InputIt l, size_type n, const hasher& hf, const allocator_type& a) : table_( boost::unordered::detail::initial_size(f, l, n), hf, key_equal(), a) { this->insert(f, l); } template <class K, class T, class H, class P, class A> unordered_map<K, T, H, P, A>::unordered_map( std::initializer_list<value_type> list, const allocator_type& a) : table_(boost::unordered::detail::initial_size( list.begin(), list.end(), detail::default_bucket_count), hasher(), key_equal(), a) { this->insert(list.begin(), list.end()); } template <class K, class T, class H, class P, class A> unordered_map<K, T, H, P, A>::unordered_map( std::initializer_list<value_type> list, size_type n, const allocator_type& a) : table_( boost::unordered::detail::initial_size(list.begin(), list.end(), n), hasher(), key_equal(), a) { this->insert(list.begin(), list.end()); } template <class K, class T, class H, class P, class A> unordered_map<K, T, H, P, A>::unordered_map( std::initializer_list<value_type> list, size_type n, const hasher& hf, const allocator_type& a) : table_( boost::unordered::detail::initial_size(list.begin(), list.end(), n), hf, key_equal(), a) { this->insert(list.begin(), list.end()); } template <class K, class T, class H, class P, class A> unordered_map<K, T, H, P, A>::~unordered_map() noexcept { } template <class K, class T, class H, class P, class A> unordered_map<K, T, H, P, A>& unordered_map<K, T, H, P, A>::operator=( std::initializer_list<value_type> list) { this->clear(); this->insert(list.begin(), list.end()); return *this; } // size and capacity template <class K, class T, class H, class P, class A> std::size_t unordered_map<K, T, H, P, A>::max_size() const noexcept { using namespace std; // size <= mlf_ * count return boost::unordered::detail::double_to_size( ceil(static_cast<double>(table_.mlf_) * static_cast<double>(table_.max_bucket_count()))) - 1; } // modifiers template <class K, class T, class H, class P, class A> template <class InputIt> void unordered_map<K, T, H, P, A>::insert(InputIt first, InputIt last) { if (first != last) { table_.insert_range_unique( table::extractor::extract(*first), first, last); } } template <class K, class T, class H, class P, class A> void unordered_map<K, T, H, P, A>::insert( std::initializer_list<value_type> list) { this->insert(list.begin(), list.end()); } template <class K, class T, class H, class P, class A> typename unordered_map<K, T, H, P, A>::iterator unordered_map<K, T, H, P, A>::erase(iterator position) { return table_.erase_node(position); } template <class K, class T, class H, class P, class A> typename unordered_map<K, T, H, P, A>::iterator unordered_map<K, T, H, P, A>::erase(const_iterator position) { return table_.erase_node(position); } template <class K, class T, class H, class P, class A> typename unordered_map<K, T, H, P, A>::size_type unordered_map<K, T, H, P, A>::erase(const key_type& k) { return table_.erase_key_unique_impl(k); } template <class K, class T, class H, class P, class A> typename unordered_map<K, T, H, P, A>::iterator unordered_map<K, T, H, P, A>::erase( const_iterator first, const_iterator last) { return table_.erase_nodes_range(first, last); } template <class K, class T, class H, class P, class A> void unordered_map<K, T, H, P, A>::swap(unordered_map& other) noexcept(value_allocator_traits::is_always_equal::value&& boost::unordered::detail::is_nothrow_swappable<H>::value&& boost::unordered::detail::is_nothrow_swappable<P>::value) { table_.swap(other.table_); } template <class K, class T, class H, class P, class A> template <typename H2, typename P2> void unordered_map<K, T, H, P, A>::merge( boost::unordered_map<K, T, H2, P2, A>& source) { table_.merge_unique(source.table_); } template <class K, class T, class H, class P, class A> template <typename H2, typename P2> void unordered_map<K, T, H, P, A>::merge( boost::unordered_map<K, T, H2, P2, A>&& source) { table_.merge_unique(source.table_); } template <class K, class T, class H, class P, class A> template <typename H2, typename P2> void unordered_map<K, T, H, P, A>::merge( boost::unordered_multimap<K, T, H2, P2, A>& source) { table_.merge_unique(source.table_); } template <class K, class T, class H, class P, class A> template <typename H2, typename P2> void unordered_map<K, T, H, P, A>::merge( boost::unordered_multimap<K, T, H2, P2, A>&& source) { table_.merge_unique(source.table_); } // observers template <class K, class T, class H, class P, class A> typename unordered_map<K, T, H, P, A>::hasher unordered_map<K, T, H, P, A>::hash_function() const { return table_.hash_function(); } template <class K, class T, class H, class P, class A> typename unordered_map<K, T, H, P, A>::key_equal unordered_map<K, T, H, P, A>::key_eq() const { return table_.key_eq(); } // lookup template <class K, class T, class H, class P, class A> typename unordered_map<K, T, H, P, A>::iterator unordered_map<K, T, H, P, A>::find(const key_type& k) { return iterator(table_.find(k)); } template <class K, class T, class H, class P, class A> typename unordered_map<K, T, H, P, A>::const_iterator unordered_map<K, T, H, P, A>::find(const key_type& k) const { return const_iterator(table_.find(k)); } template <class K, class T, class H, class P, class A> template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate> typename unordered_map<K, T, H, P, A>::iterator unordered_map<K, T, H, P, A>::find(CompatibleKey const& k, CompatibleHash const& hash, CompatiblePredicate const& eq) { return table_.transparent_find(k, hash, eq); } template <class K, class T, class H, class P, class A> template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate> typename unordered_map<K, T, H, P, A>::const_iterator unordered_map<K, T, H, P, A>::find(CompatibleKey const& k, CompatibleHash const& hash, CompatiblePredicate const& eq) const { return table_.transparent_find(k, hash, eq); } template <class K, class T, class H, class P, class A> typename unordered_map<K, T, H, P, A>::size_type unordered_map<K, T, H, P, A>::count(const key_type& k) const { return table_.find_node(k) ? 1 : 0; } template <class K, class T, class H, class P, class A> std::pair<typename unordered_map<K, T, H, P, A>::iterator, typename unordered_map<K, T, H, P, A>::iterator> unordered_map<K, T, H, P, A>::equal_range(const key_type& k) { iterator first = table_.find(k); iterator second = first; if (second != this->end()) { ++second; } return std::make_pair(first, second); } template <class K, class T, class H, class P, class A> std::pair<typename unordered_map<K, T, H, P, A>::const_iterator, typename unordered_map<K, T, H, P, A>::const_iterator> unordered_map<K, T, H, P, A>::equal_range(const key_type& k) const { iterator first = table_.find(k); iterator second = first; if (second != this->end()) { ++second; } return std::make_pair(const_iterator(first), const_iterator(second)); } template <class K, class T, class H, class P, class A> typename unordered_map<K, T, H, P, A>::mapped_type& unordered_map<K, T, H, P, A>::operator[](const key_type& k) { return table_.try_emplace_unique(k).first->second; } template <class K, class T, class H, class P, class A> typename unordered_map<K, T, H, P, A>::mapped_type& unordered_map<K, T, H, P, A>::operator[](key_type&& k) { return table_.try_emplace_unique(std::move(k)).first->second; } template <class K, class T, class H, class P, class A> template <class Key> typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value, typename unordered_map<K, T, H, P, A>::mapped_type&>::type unordered_map<K, T, H, P, A>::operator[](Key&& k) { return table_.try_emplace_unique(std::forward<Key>(k)).first->second; } template <class K, class T, class H, class P, class A> typename unordered_map<K, T, H, P, A>::mapped_type& unordered_map<K, T, H, P, A>::at(const key_type& k) { typedef typename table::node_pointer node_pointer; if (table_.size_) { node_pointer p = table_.find_node(k); if (p) return p->value().second; } boost::unordered::detail::throw_out_of_range( "Unable to find key in unordered_map."); } template <class K, class T, class H, class P, class A> typename unordered_map<K, T, H, P, A>::mapped_type const& unordered_map<K, T, H, P, A>::at(const key_type& k) const { typedef typename table::node_pointer node_pointer; if (table_.size_) { node_pointer p = table_.find_node(k); if (p) return p->value().second; } boost::unordered::detail::throw_out_of_range( "Unable to find key in unordered_map."); } template <class K, class T, class H, class P, class A> template <class Key> typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value, typename unordered_map<K, T, H, P, A>::mapped_type&>::type unordered_map<K, T, H, P, A>::at(Key&& k) { typedef typename table::node_pointer node_pointer; if (table_.size_) { node_pointer p = table_.find_node(std::forward<Key>(k)); if (p) return p->value().second; } boost::unordered::detail::throw_out_of_range( "Unable to find key in unordered_map."); } template <class K, class T, class H, class P, class A> template <class Key> typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value, typename unordered_map<K, T, H, P, A>::mapped_type const&>::type unordered_map<K, T, H, P, A>::at(Key&& k) const { typedef typename table::node_pointer node_pointer; if (table_.size_) { node_pointer p = table_.find_node(std::forward<Key>(k)); if (p) return p->value().second; } boost::unordered::detail::throw_out_of_range( "Unable to find key in unordered_map."); } template <class K, class T, class H, class P, class A> typename unordered_map<K, T, H, P, A>::size_type unordered_map<K, T, H, P, A>::bucket_size(size_type n) const { return table_.bucket_size(n); } // hash policy template <class K, class T, class H, class P, class A> float unordered_map<K, T, H, P, A>::load_factor() const noexcept { if (table_.size_ == 0) { return 0.0f; } BOOST_ASSERT(table_.bucket_count() != 0); return static_cast<float>(table_.size_) / static_cast<float>(table_.bucket_count()); } template <class K, class T, class H, class P, class A> void unordered_map<K, T, H, P, A>::max_load_factor(float m) noexcept { table_.max_load_factor(m); } template <class K, class T, class H, class P, class A> void unordered_map<K, T, H, P, A>::rehash(size_type n) { table_.rehash(n); } template <class K, class T, class H, class P, class A> void unordered_map<K, T, H, P, A>::reserve(size_type n) { table_.reserve(n); } template <class K, class T, class H, class P, class A> inline bool operator==(unordered_map<K, T, H, P, A> const& m1, unordered_map<K, T, H, P, A> const& m2) { #if BOOST_WORKAROUND(BOOST_CODEGEARC, BOOST_TESTED_AT(0x0613)) struct dummy { unordered_map<K, T, H, P, A> x; }; #endif return m1.table_.equals_unique(m2.table_); } template <class K, class T, class H, class P, class A> inline bool operator!=(unordered_map<K, T, H, P, A> const& m1, unordered_map<K, T, H, P, A> const& m2) { #if BOOST_WORKAROUND(BOOST_CODEGEARC, BOOST_TESTED_AT(0x0613)) struct dummy { unordered_map<K, T, H, P, A> x; }; #endif return !m1.table_.equals_unique(m2.table_); } template <class K, class T, class H, class P, class A> inline void swap(unordered_map<K, T, H, P, A>& m1, unordered_map<K, T, H, P, A>& m2) noexcept(noexcept(m1.swap(m2))) { #if BOOST_WORKAROUND(BOOST_CODEGEARC, BOOST_TESTED_AT(0x0613)) struct dummy { unordered_map<K, T, H, P, A> x; }; #endif m1.swap(m2); } template <class K, class T, class H, class P, class A, class Predicate> typename unordered_map<K, T, H, P, A>::size_type erase_if( unordered_map<K, T, H, P, A>& c, Predicate pred) { return detail::erase_if(c, pred); } //////////////////////////////////////////////////////////////////////////// template <class K, class T, class H, class P, class A> unordered_multimap<K, T, H, P, A>::unordered_multimap() { } template <class K, class T, class H, class P, class A> unordered_multimap<K, T, H, P, A>::unordered_multimap(size_type n, const hasher& hf, const key_equal& eql, const allocator_type& a) : table_(n, hf, eql, a) { } template <class K, class T, class H, class P, class A> template <class InputIt> unordered_multimap<K, T, H, P, A>::unordered_multimap(InputIt f, InputIt l, size_type n, const hasher& hf, const key_equal& eql, const allocator_type& a) : table_(boost::unordered::detail::initial_size(f, l, n), hf, eql, a) { this->insert(f, l); } template <class K, class T, class H, class P, class A> unordered_multimap<K, T, H, P, A>::unordered_multimap( unordered_multimap const& other) : table_(other.table_, unordered_multimap::value_allocator_traits:: select_on_container_copy_construction(other.get_allocator())) { if (other.table_.size_) { table_.copy_buckets(other.table_, std::false_type()); } } template <class K, class T, class H, class P, class A> unordered_multimap<K, T, H, P, A>::unordered_multimap( allocator_type const& a) : table_(boost::unordered::detail::default_bucket_count, hasher(), key_equal(), a) { } template <class K, class T, class H, class P, class A> unordered_multimap<K, T, H, P, A>::unordered_multimap( unordered_multimap const& other, allocator_type const& a) : table_(other.table_, a) { if (other.table_.size_) { table_.copy_buckets(other.table_, std::false_type()); } } template <class K, class T, class H, class P, class A> unordered_multimap<K, T, H, P, A>::unordered_multimap( unordered_multimap&& other, allocator_type const& a) : table_(other.table_, a, boost::unordered::detail::move_tag()) { table_.move_construct_buckets(other.table_); } template <class K, class T, class H, class P, class A> unordered_multimap<K, T, H, P, A>::unordered_multimap( std::initializer_list<value_type> list, size_type n, const hasher& hf, const key_equal& eql, const allocator_type& a) : table_( boost::unordered::detail::initial_size(list.begin(), list.end(), n), hf, eql, a) { this->insert(list.begin(), list.end()); } template <class K, class T, class H, class P, class A> unordered_multimap<K, T, H, P, A>::unordered_multimap( size_type n, const allocator_type& a) : table_(n, hasher(), key_equal(), a) { } template <class K, class T, class H, class P, class A> unordered_multimap<K, T, H, P, A>::unordered_multimap( size_type n, const hasher& hf, const allocator_type& a) : table_(n, hf, key_equal(), a) { } template <class K, class T, class H, class P, class A> template <class InputIterator> unordered_multimap<K, T, H, P, A>::unordered_multimap( InputIterator f, InputIterator l, const allocator_type& a) : table_(boost::unordered::detail::initial_size( f, l, detail::default_bucket_count), hasher(), key_equal(), a) { this->insert(f, l); } template <class K, class T, class H, class P, class A> template <class InputIt> unordered_multimap<K, T, H, P, A>::unordered_multimap( InputIt f, InputIt l, size_type n, const allocator_type& a) : table_(boost::unordered::detail::initial_size(f, l, n), hasher(), key_equal(), a) { this->insert(f, l); } template <class K, class T, class H, class P, class A> template <class InputIt> unordered_multimap<K, T, H, P, A>::unordered_multimap(InputIt f, InputIt l, size_type n, const hasher& hf, const allocator_type& a) : table_( boost::unordered::detail::initial_size(f, l, n), hf, key_equal(), a) { this->insert(f, l); } template <class K, class T, class H, class P, class A> unordered_multimap<K, T, H, P, A>::unordered_multimap( std::initializer_list<value_type> list, const allocator_type& a) : table_(boost::unordered::detail::initial_size( list.begin(), list.end(), detail::default_bucket_count), hasher(), key_equal(), a) { this->insert(list.begin(), list.end()); } template <class K, class T, class H, class P, class A> unordered_multimap<K, T, H, P, A>::unordered_multimap( std::initializer_list<value_type> list, size_type n, const allocator_type& a) : table_( boost::unordered::detail::initial_size(list.begin(), list.end(), n), hasher(), key_equal(), a) { this->insert(list.begin(), list.end()); } template <class K, class T, class H, class P, class A> unordered_multimap<K, T, H, P, A>::unordered_multimap( std::initializer_list<value_type> list, size_type n, const hasher& hf, const allocator_type& a) : table_( boost::unordered::detail::initial_size(list.begin(), list.end(), n), hf, key_equal(), a) { this->insert(list.begin(), list.end()); } template <class K, class T, class H, class P, class A> unordered_multimap<K, T, H, P, A>::~unordered_multimap() noexcept { } template <class K, class T, class H, class P, class A> unordered_multimap<K, T, H, P, A>& unordered_multimap<K, T, H, P, A>::operator=( std::initializer_list<value_type> list) { this->clear(); this->insert(list.begin(), list.end()); return *this; } // size and capacity template <class K, class T, class H, class P, class A> std::size_t unordered_multimap<K, T, H, P, A>::max_size() const noexcept { using namespace std; // size <= mlf_ * count return boost::unordered::detail::double_to_size( ceil(static_cast<double>(table_.mlf_) * static_cast<double>(table_.max_bucket_count()))) - 1; } // modifiers template <class K, class T, class H, class P, class A> template <class InputIt> void unordered_multimap<K, T, H, P, A>::insert(InputIt first, InputIt last) { table_.insert_range_equiv(first, last); } template <class K, class T, class H, class P, class A> void unordered_multimap<K, T, H, P, A>::insert( std::initializer_list<value_type> list) { this->insert(list.begin(), list.end()); } template <class K, class T, class H, class P, class A> typename unordered_multimap<K, T, H, P, A>::iterator unordered_multimap<K, T, H, P, A>::erase(iterator position) { BOOST_ASSERT(position != this->end()); return table_.erase_node(position); } template <class K, class T, class H, class P, class A> typename unordered_multimap<K, T, H, P, A>::iterator unordered_multimap<K, T, H, P, A>::erase(const_iterator position) { BOOST_ASSERT(position != this->end()); return table_.erase_node(position); } template <class K, class T, class H, class P, class A> typename unordered_multimap<K, T, H, P, A>::size_type unordered_multimap<K, T, H, P, A>::erase(const key_type& k) { return table_.erase_key_equiv(k); } template <class K, class T, class H, class P, class A> typename unordered_multimap<K, T, H, P, A>::iterator unordered_multimap<K, T, H, P, A>::erase( const_iterator first, const_iterator last) { return table_.erase_nodes_range(first, last); } template <class K, class T, class H, class P, class A> void unordered_multimap<K, T, H, P, A>::swap(unordered_multimap& other) noexcept(value_allocator_traits::is_always_equal::value&& boost::unordered::detail::is_nothrow_swappable<H>::value&& boost::unordered::detail::is_nothrow_swappable<P>::value) { table_.swap(other.table_); } // observers template <class K, class T, class H, class P, class A> typename unordered_multimap<K, T, H, P, A>::hasher unordered_multimap<K, T, H, P, A>::hash_function() const { return table_.hash_function(); } template <class K, class T, class H, class P, class A> typename unordered_multimap<K, T, H, P, A>::key_equal unordered_multimap<K, T, H, P, A>::key_eq() const { return table_.key_eq(); } template <class K, class T, class H, class P, class A> template <typename H2, typename P2> void unordered_multimap<K, T, H, P, A>::merge( boost::unordered_multimap<K, T, H2, P2, A>& source) { while (!source.empty()) { insert(source.extract(source.begin())); } } template <class K, class T, class H, class P, class A> template <typename H2, typename P2> void unordered_multimap<K, T, H, P, A>::merge( boost::unordered_multimap<K, T, H2, P2, A>&& source) { while (!source.empty()) { insert(source.extract(source.begin())); } } template <class K, class T, class H, class P, class A> template <typename H2, typename P2> void unordered_multimap<K, T, H, P, A>::merge( boost::unordered_map<K, T, H2, P2, A>& source) { while (!source.empty()) { insert(source.extract(source.begin())); } } template <class K, class T, class H, class P, class A> template <typename H2, typename P2> void unordered_multimap<K, T, H, P, A>::merge( boost::unordered_map<K, T, H2, P2, A>&& source) { while (!source.empty()) { insert(source.extract(source.begin())); } } // lookup template <class K, class T, class H, class P, class A> typename unordered_multimap<K, T, H, P, A>::iterator unordered_multimap<K, T, H, P, A>::find(const key_type& k) { return iterator(table_.find(k)); } template <class K, class T, class H, class P, class A> typename unordered_multimap<K, T, H, P, A>::const_iterator unordered_multimap<K, T, H, P, A>::find(const key_type& k) const { return const_iterator(table_.find(k)); } template <class K, class T, class H, class P, class A> template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate> typename unordered_multimap<K, T, H, P, A>::iterator unordered_multimap<K, T, H, P, A>::find(CompatibleKey const& k, CompatibleHash const& hash, CompatiblePredicate const& eq) { return table_.transparent_find(k, hash, eq); } template <class K, class T, class H, class P, class A> template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate> typename unordered_multimap<K, T, H, P, A>::const_iterator unordered_multimap<K, T, H, P, A>::find(CompatibleKey const& k, CompatibleHash const& hash, CompatiblePredicate const& eq) const { return table_.transparent_find(k, hash, eq); } template <class K, class T, class H, class P, class A> typename unordered_multimap<K, T, H, P, A>::size_type unordered_multimap<K, T, H, P, A>::count(const key_type& k) const { return table_.group_count(k); } template <class K, class T, class H, class P, class A> std::pair<typename unordered_multimap<K, T, H, P, A>::iterator, typename unordered_multimap<K, T, H, P, A>::iterator> unordered_multimap<K, T, H, P, A>::equal_range(const key_type& k) { iterator n = table_.find(k); return std::make_pair(n, (n == end() ? n : table_.next_group(k, n))); } template <class K, class T, class H, class P, class A> std::pair<typename unordered_multimap<K, T, H, P, A>::const_iterator, typename unordered_multimap<K, T, H, P, A>::const_iterator> unordered_multimap<K, T, H, P, A>::equal_range(const key_type& k) const { iterator n = table_.find(k); return std::make_pair(const_iterator(n), const_iterator(n == end() ? n : table_.next_group(k, n))); } template <class K, class T, class H, class P, class A> typename unordered_multimap<K, T, H, P, A>::size_type unordered_multimap<K, T, H, P, A>::bucket_size(size_type n) const { return table_.bucket_size(n); } // hash policy template <class K, class T, class H, class P, class A> float unordered_multimap<K, T, H, P, A>::load_factor() const noexcept { if (table_.size_ == 0) { return 0.0f; } BOOST_ASSERT(table_.bucket_count() != 0); return static_cast<float>(table_.size_) / static_cast<float>(table_.bucket_count()); } template <class K, class T, class H, class P, class A> void unordered_multimap<K, T, H, P, A>::max_load_factor(float m) noexcept { table_.max_load_factor(m); } template <class K, class T, class H, class P, class A> void unordered_multimap<K, T, H, P, A>::rehash(size_type n) { table_.rehash(n); } template <class K, class T, class H, class P, class A> void unordered_multimap<K, T, H, P, A>::reserve(size_type n) { table_.reserve(n); } template <class K, class T, class H, class P, class A> inline bool operator==(unordered_multimap<K, T, H, P, A> const& m1, unordered_multimap<K, T, H, P, A> const& m2) { #if BOOST_WORKAROUND(BOOST_CODEGEARC, BOOST_TESTED_AT(0x0613)) struct dummy { unordered_multimap<K, T, H, P, A> x; }; #endif return m1.table_.equals_equiv(m2.table_); } template <class K, class T, class H, class P, class A> inline bool operator!=(unordered_multimap<K, T, H, P, A> const& m1, unordered_multimap<K, T, H, P, A> const& m2) { #if BOOST_WORKAROUND(BOOST_CODEGEARC, BOOST_TESTED_AT(0x0613)) struct dummy { unordered_multimap<K, T, H, P, A> x; }; #endif return !m1.table_.equals_equiv(m2.table_); } template <class K, class T, class H, class P, class A> inline void swap(unordered_multimap<K, T, H, P, A>& m1, unordered_multimap<K, T, H, P, A>& m2) noexcept(noexcept(m1.swap(m2))) { #if BOOST_WORKAROUND(BOOST_CODEGEARC, BOOST_TESTED_AT(0x0613)) struct dummy { unordered_multimap<K, T, H, P, A> x; }; #endif m1.swap(m2); } template <class K, class T, class H, class P, class A, class Predicate> typename unordered_multimap<K, T, H, P, A>::size_type erase_if( unordered_multimap<K, T, H, P, A>& c, Predicate pred) { return detail::erase_if(c, pred); } template <typename N, class K, class T, class A> class node_handle_map { template <typename Types> friend struct ::boost::unordered::detail::table; template <class K2, class T2, class H2, class P2, class A2> friend class boost::unordered::unordered_map; template <class K2, class T2, class H2, class P2, class A2> friend class boost::unordered::unordered_multimap; typedef typename boost::allocator_rebind<A, std::pair<K const, T> >::type value_allocator; typedef N node; typedef typename boost::allocator_rebind<A, node>::type node_allocator; typedef typename boost::allocator_pointer<node_allocator>::type node_pointer; public: typedef K key_type; typedef T mapped_type; typedef A allocator_type; private: node_pointer ptr_; boost::unordered::detail::optional<value_allocator> alloc_; node_handle_map(node_pointer ptr, allocator_type const& a) : ptr_(ptr), alloc_(a) { } public: constexpr node_handle_map() noexcept : ptr_(), alloc_() {} node_handle_map(node_handle_map const&) = delete; node_handle_map& operator=(node_handle_map const&) = delete; ~node_handle_map() { if (ptr_) { node_allocator node_alloc(*alloc_); boost::unordered::detail::node_tmp<node_allocator> tmp( ptr_, node_alloc); } } node_handle_map(node_handle_map&& n) noexcept : ptr_(n.ptr_), alloc_(std::move(n.alloc_)) { n.ptr_ = node_pointer(); } node_handle_map& operator=(node_handle_map&& n) { BOOST_ASSERT(!alloc_.has_value() || boost::allocator_propagate_on_container_move_assignment< value_allocator>::type::value || (n.alloc_.has_value() && alloc_ == n.alloc_)); if (ptr_) { node_allocator node_alloc(*alloc_); boost::unordered::detail::node_tmp<node_allocator> tmp( ptr_, node_alloc); ptr_ = node_pointer(); } if (!alloc_.has_value() || boost::allocator_propagate_on_container_move_assignment< value_allocator>::type::value) { alloc_ = std::move(n.alloc_); } ptr_ = n.ptr_; n.ptr_ = node_pointer(); return *this; } key_type& key() const { return const_cast<key_type&>(ptr_->value().first); } mapped_type& mapped() const { return ptr_->value().second; } allocator_type get_allocator() const { return *alloc_; } explicit operator bool() const noexcept { return !this->operator!(); } bool operator!() const noexcept { return ptr_ ? 0 : 1; } BOOST_ATTRIBUTE_NODISCARD bool empty() const noexcept { return ptr_ ? 0 : 1; } void swap(node_handle_map& n) noexcept(boost::allocator_propagate_on_container_swap< value_allocator>::type::value || boost::allocator_is_always_equal<value_allocator>::type::value) { BOOST_ASSERT(!alloc_.has_value() || !n.alloc_.has_value() || boost::allocator_propagate_on_container_swap< value_allocator>::type::value || alloc_ == n.alloc_); if (boost::allocator_propagate_on_container_swap< value_allocator>::type::value || !alloc_.has_value() || !n.alloc_.has_value()) { boost::core::invoke_swap(alloc_, n.alloc_); } boost::core::invoke_swap(ptr_, n.ptr_); } }; template <class N, class K, class T, class A> void swap(node_handle_map<N, K, T, A>& x, node_handle_map<N, K, T, A>& y) noexcept(noexcept(x.swap(y))) { x.swap(y); } template <class Iter, class NodeType> struct insert_return_type_map { public: Iter position; bool inserted; NodeType node; insert_return_type_map() : position(), inserted(false), node() {} insert_return_type_map(insert_return_type_map const&) = delete; insert_return_type_map& operator=(insert_return_type_map const&) = delete; insert_return_type_map(insert_return_type_map&& x) noexcept : position(x.position), inserted(x.inserted), node(std::move(x.node)) { } insert_return_type_map& operator=(insert_return_type_map&& x) { inserted = x.inserted; position = x.position; node = std::move(x.node); return *this; } }; template <class Iter, class NodeType> void swap(insert_return_type_map<Iter, NodeType>& x, insert_return_type_map<Iter, NodeType>& y) { boost::core::invoke_swap(x.node, y.node); boost::core::invoke_swap(x.inserted, y.inserted); boost::core::invoke_swap(x.position, y.position); } } // namespace unordered namespace serialization { template <class K, class T, class H, class P, class A> struct version<boost::unordered_map<K, T, H, P, A> > { BOOST_STATIC_CONSTANT(int, value = 1); }; template <class K, class T, class H, class P, class A> struct version<boost::unordered_multimap<K, T, H, P, A> > { BOOST_STATIC_CONSTANT(int, value = 1); }; } // namespace serialization } // namespace boost #if defined(BOOST_MSVC) #pragma warning(pop) #endif #endif // BOOST_UNORDERED_UNORDERED_MAP_HPP_INCLUDED