// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2007-2014 Barend Gehrels, Amsterdam, the Netherlands. // Copyright (c) 2008-2014 Bruno Lalande, Paris, France. // Copyright (c) 2009-2014 Mateusz Loskot, London, UK. // Copyright (c) 2013-2014 Adam Wulkiewicz, Lodz, Poland. // This file was modified by Oracle on 2013-2021. // Modifications copyright (c) 2013-2021, Oracle and/or its affiliates. // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle // Parts of Boost.Geometry are redesigned from Geodan's Geographic Library // (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_DISJOINT_INTERFACE_HPP #define BOOST_GEOMETRY_ALGORITHMS_DETAIL_DISJOINT_INTERFACE_HPP #include <cstddef> #include <boost/geometry/algorithms/detail/relate/interface.hpp> #include <boost/geometry/algorithms/detail/visit.hpp> #include <boost/geometry/algorithms/dispatch/disjoint.hpp> #include <boost/geometry/geometries/adapted/boost_variant.hpp> // For backward compatibility #include <boost/geometry/geometries/concepts/check.hpp> #include <boost/geometry/strategies/default_strategy.hpp> #include <boost/geometry/strategies/detail.hpp> #include <boost/geometry/strategies/relate/services.hpp> namespace boost { namespace geometry { namespace resolve_strategy { template < typename Strategy, bool IsUmbrella = strategies::detail::is_umbrella_strategy<Strategy>::value > struct disjoint { template <typename Geometry1, typename Geometry2> static inline bool apply(Geometry1 const& geometry1, Geometry2 const& geometry2, Strategy const& strategy) { return dispatch::disjoint < Geometry1, Geometry2 >::apply(geometry1, geometry2, strategy); } }; template <typename Strategy> struct disjoint<Strategy, false> { template <typename Geometry1, typename Geometry2> static inline bool apply(Geometry1 const& geometry1, Geometry2 const& geometry2, Strategy const& strategy) { using strategies::relate::services::strategy_converter; return dispatch::disjoint < Geometry1, Geometry2 >::apply(geometry1, geometry2, strategy_converter<Strategy>::get(strategy)); } }; template <> struct disjoint<default_strategy, false> { template <typename Geometry1, typename Geometry2> static inline bool apply(Geometry1 const& geometry1, Geometry2 const& geometry2, default_strategy) { typedef typename strategies::relate::services::default_strategy < Geometry1, Geometry2 >::type strategy_type; return dispatch::disjoint < Geometry1, Geometry2 >::apply(geometry1, geometry2, strategy_type()); } }; } // namespace resolve_strategy namespace resolve_dynamic { template < typename Geometry1, typename Geometry2, bool IsDynamic = util::is_dynamic_geometry<Geometry1>::value || util::is_dynamic_geometry<Geometry2>::value, bool IsCollection = util::is_geometry_collection<Geometry1>::value || util::is_geometry_collection<Geometry2>::value > struct disjoint { template <typename Strategy> static inline bool apply(Geometry1 const& geometry1, Geometry2 const& geometry2, Strategy const& strategy) { concepts::check_concepts_and_equal_dimensions < Geometry1 const, Geometry2 const >(); return resolve_strategy::disjoint < Strategy >::apply(geometry1, geometry2, strategy); } }; template <typename Geometry1, typename Geometry2> struct disjoint<Geometry1, Geometry2, true, false> { template <typename Strategy> static inline bool apply(Geometry1 const& geometry1, Geometry2 const& geometry2, Strategy const& strategy) { bool result = true; detail::visit([&](auto const& g1, auto const& g2) { result = disjoint < util::remove_cref_t<decltype(g1)>, util::remove_cref_t<decltype(g2)> >::apply(g1, g2, strategy); }, geometry1, geometry2); return result; } }; // TODO: The complexity is quadratic for two GCs // Decrease e.g. with spatial index template <typename Geometry1, typename Geometry2, bool IsDynamic> struct disjoint<Geometry1, Geometry2, IsDynamic, true> { template <typename Strategy> static inline bool apply(Geometry1 const& geometry1, Geometry2 const& geometry2, Strategy const& strategy) { bool result = true; detail::visit_breadth_first([&](auto const& g1) { detail::visit_breadth_first([&](auto const& g2) { result = disjoint < util::remove_cref_t<decltype(g1)>, util::remove_cref_t<decltype(g2)> >::apply(g1, g2, strategy); // If any of the combination intersects then the final result is not disjoint return result; }, geometry2); return result; }, geometry1); return result; } }; } // namespace resolve_dynamic /*! \brief \brief_check2{are disjoint} \ingroup disjoint \tparam Geometry1 \tparam_geometry \tparam Geometry2 \tparam_geometry \tparam Strategy \tparam_strategy{Disjoint} \param geometry1 \param_geometry \param geometry2 \param_geometry \param strategy \param_strategy{disjoint} \return \return_check2{are disjoint} \qbk{distinguish,with strategy} \qbk{[include reference/algorithms/disjoint.qbk]} */ template <typename Geometry1, typename Geometry2, typename Strategy> inline bool disjoint(Geometry1 const& geometry1, Geometry2 const& geometry2, Strategy const& strategy) { return resolve_dynamic::disjoint < Geometry1, Geometry2 >::apply(geometry1, geometry2, strategy); } /*! \brief \brief_check2{are disjoint} \ingroup disjoint \tparam Geometry1 \tparam_geometry \tparam Geometry2 \tparam_geometry \param geometry1 \param_geometry \param geometry2 \param_geometry \return \return_check2{are disjoint} \qbk{[include reference/algorithms/disjoint.qbk]} \qbk{ [heading Examples] [disjoint] [disjoint_output] } */ template <typename Geometry1, typename Geometry2> inline bool disjoint(Geometry1 const& geometry1, Geometry2 const& geometry2) { return resolve_dynamic::disjoint < Geometry1, Geometry2 >::apply(geometry1, geometry2, default_strategy()); } }} // namespace boost::geometry #endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_DISJOINT_INTERFACE_HPP