// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands. // This file was modified by Oracle on 2014-2022. // Modifications copyright (c) 2014-2022, Oracle and/or its affiliates. // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_INTERSECTION_INTERFACE_HPP #define BOOST_GEOMETRY_ALGORITHMS_DETAIL_INTERSECTION_INTERFACE_HPP #include <boost/geometry/algorithms/detail/overlay/intersection_insert.hpp> #include <boost/geometry/algorithms/detail/tupled_output.hpp> #include <boost/geometry/geometries/adapted/boost_variant.hpp> #include <boost/geometry/policies/robustness/get_rescale_policy.hpp> #include <boost/geometry/strategies/default_strategy.hpp> #include <boost/geometry/strategies/detail.hpp> #include <boost/geometry/strategies/relate/services.hpp> #include <boost/geometry/util/range.hpp> #include <boost/geometry/util/type_traits_std.hpp> namespace boost { namespace geometry { #ifndef DOXYGEN_NO_DISPATCH namespace dispatch { // By default, all is forwarded to the intersection_insert-dispatcher template < typename Geometry1, typename Geometry2, typename Tag1 = typename geometry::tag<Geometry1>::type, typename Tag2 = typename geometry::tag<Geometry2>::type, bool Reverse = reverse_dispatch<Geometry1, Geometry2>::type::value > struct intersection { template <typename RobustPolicy, typename GeometryOut, typename Strategy> static inline bool apply(Geometry1 const& geometry1, Geometry2 const& geometry2, RobustPolicy const& robust_policy, GeometryOut& geometry_out, Strategy const& strategy) { typedef typename geometry::detail::output_geometry_value < GeometryOut >::type SingleOut; intersection_insert < Geometry1, Geometry2, SingleOut, overlay_intersection >::apply(geometry1, geometry2, robust_policy, geometry::detail::output_geometry_back_inserter(geometry_out), strategy); return true; } }; // If reversal is needed, perform it template < typename Geometry1, typename Geometry2, typename Tag1, typename Tag2 > struct intersection < Geometry1, Geometry2, Tag1, Tag2, true > : intersection<Geometry2, Geometry1, Tag2, Tag1, false> { template <typename RobustPolicy, typename GeometryOut, typename Strategy> static inline bool apply( Geometry1 const& g1, Geometry2 const& g2, RobustPolicy const& robust_policy, GeometryOut& out, Strategy const& strategy) { return intersection < Geometry2, Geometry1, Tag2, Tag1, false >::apply(g2, g1, robust_policy, out, strategy); } }; } // namespace dispatch #endif // DOXYGEN_NO_DISPATCH namespace resolve_collection { template < typename Geometry1, typename Geometry2, typename GeometryOut, typename Tag1 = typename geometry::tag<Geometry1>::type, typename Tag2 = typename geometry::tag<Geometry2>::type, typename TagOut = typename geometry::tag<GeometryOut>::type > struct intersection { template <typename Strategy> static bool apply(Geometry1 const& geometry1, Geometry2 const& geometry2, GeometryOut & geometry_out, Strategy const& strategy) { typedef typename geometry::rescale_overlay_policy_type < Geometry1, Geometry2, typename Strategy::cs_tag >::type rescale_policy_type; rescale_policy_type robust_policy = geometry::get_rescale_policy<rescale_policy_type>( geometry1, geometry2, strategy); return dispatch::intersection < Geometry1, Geometry2 >::apply(geometry1, geometry2, robust_policy, geometry_out, strategy); } }; } // namespace resolve_collection namespace resolve_strategy { template < typename Strategy, bool IsUmbrella = strategies::detail::is_umbrella_strategy<Strategy>::value > struct intersection { template < typename Geometry1, typename Geometry2, typename GeometryOut > static inline bool apply(Geometry1 const& geometry1, Geometry2 const& geometry2, GeometryOut & geometry_out, Strategy const& strategy) { return resolve_collection::intersection < Geometry1, Geometry2, GeometryOut >::apply(geometry1, geometry2, geometry_out, strategy); } }; template <typename Strategy> struct intersection<Strategy, false> { template < typename Geometry1, typename Geometry2, typename GeometryOut > static inline bool apply(Geometry1 const& geometry1, Geometry2 const& geometry2, GeometryOut & geometry_out, Strategy const& strategy) { using strategies::relate::services::strategy_converter; return intersection < decltype(strategy_converter<Strategy>::get(strategy)) >::apply(geometry1, geometry2, geometry_out, strategy_converter<Strategy>::get(strategy)); } }; template <> struct intersection<default_strategy, false> { template < typename Geometry1, typename Geometry2, typename GeometryOut > static inline bool apply(Geometry1 const& geometry1, Geometry2 const& geometry2, GeometryOut & geometry_out, default_strategy) { typedef typename strategies::relate::services::default_strategy < Geometry1, Geometry2 >::type strategy_type; return intersection < strategy_type >::apply(geometry1, geometry2, geometry_out, strategy_type()); } }; } // resolve_strategy namespace resolve_dynamic { template < typename Geometry1, typename Geometry2, typename Tag1 = typename geometry::tag<Geometry1>::type, typename Tag2 = typename geometry::tag<Geometry2>::type > struct intersection { template <typename GeometryOut, typename Strategy> static inline bool apply(Geometry1 const& geometry1, Geometry2 const& geometry2, GeometryOut& geometry_out, Strategy const& strategy) { concepts::check<Geometry1 const>(); concepts::check<Geometry2 const>(); return resolve_strategy::intersection < Strategy >::apply(geometry1, geometry2, geometry_out, strategy); } }; template <typename DynamicGeometry1, typename Geometry2, typename Tag2> struct intersection<DynamicGeometry1, Geometry2, dynamic_geometry_tag, Tag2> { template <typename GeometryOut, typename Strategy> static inline bool apply(DynamicGeometry1 const& geometry1, Geometry2 const& geometry2, GeometryOut& geometry_out, Strategy const& strategy) { bool result = false; traits::visit<DynamicGeometry1>::apply([&](auto const& g1) { result = intersection < util::remove_cref_t<decltype(g1)>, Geometry2 >::apply(g1, geometry2, geometry_out, strategy); }, geometry1); return result; } }; template <typename Geometry1, typename DynamicGeometry2, typename Tag1> struct intersection<Geometry1, DynamicGeometry2, Tag1, dynamic_geometry_tag> { template <typename GeometryOut, typename Strategy> static inline bool apply(Geometry1 const& geometry1, DynamicGeometry2 const& geometry2, GeometryOut& geometry_out, Strategy const& strategy) { bool result = false; traits::visit<DynamicGeometry2>::apply([&](auto const& g2) { result = intersection < Geometry1, util::remove_cref_t<decltype(g2)> >::apply(geometry1, g2, geometry_out, strategy); }, geometry2); return result; } }; template <typename DynamicGeometry1, typename DynamicGeometry2> struct intersection<DynamicGeometry1, DynamicGeometry2, dynamic_geometry_tag, dynamic_geometry_tag> { template <typename GeometryOut, typename Strategy> static inline bool apply(DynamicGeometry1 const& geometry1, DynamicGeometry2 const& geometry2, GeometryOut& geometry_out, Strategy const& strategy) { bool result = false; traits::visit<DynamicGeometry1, DynamicGeometry2>::apply([&](auto const& g1, auto const& g2) { result = intersection < util::remove_cref_t<decltype(g1)>, util::remove_cref_t<decltype(g2)> >::apply(g1, g2, geometry_out, strategy); }, geometry1, geometry2); return result; } }; } // namespace resolve_dynamic /*! \brief \brief_calc2{intersection} \ingroup intersection \details \details_calc2{intersection, spatial set theoretic intersection}. \tparam Geometry1 \tparam_geometry \tparam Geometry2 \tparam_geometry \tparam GeometryOut Collection of geometries (e.g. std::vector, std::deque, boost::geometry::multi*) of which the value_type fulfills a \p_l_or_c concept, or it is the output geometry (e.g. for a box) \tparam Strategy \tparam_strategy{Intersection} \param geometry1 \param_geometry \param geometry2 \param_geometry \param geometry_out The output geometry, either a multi_point, multi_polygon, multi_linestring, or a box (for intersection of two boxes) \param strategy \param_strategy{intersection} \qbk{distinguish,with strategy} \qbk{[include reference/algorithms/intersection.qbk]} */ template < typename Geometry1, typename Geometry2, typename GeometryOut, typename Strategy > inline bool intersection(Geometry1 const& geometry1, Geometry2 const& geometry2, GeometryOut& geometry_out, Strategy const& strategy) { return resolve_dynamic::intersection < Geometry1, Geometry2 >::apply(geometry1, geometry2, geometry_out, strategy); } /*! \brief \brief_calc2{intersection} \ingroup intersection \details \details_calc2{intersection, spatial set theoretic intersection}. \tparam Geometry1 \tparam_geometry \tparam Geometry2 \tparam_geometry \tparam GeometryOut Collection of geometries (e.g. std::vector, std::deque, boost::geometry::multi*) of which the value_type fulfills a \p_l_or_c concept, or it is the output geometry (e.g. for a box) \param geometry1 \param_geometry \param geometry2 \param_geometry \param geometry_out The output geometry, either a multi_point, multi_polygon, multi_linestring, or a box (for intersection of two boxes) \qbk{[include reference/algorithms/intersection.qbk]} */ template < typename Geometry1, typename Geometry2, typename GeometryOut > inline bool intersection(Geometry1 const& geometry1, Geometry2 const& geometry2, GeometryOut& geometry_out) { return resolve_dynamic::intersection < Geometry1, Geometry2 >::apply(geometry1, geometry2, geometry_out, default_strategy()); } }} // namespace boost::geometry #endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_INTERSECTION_INTERFACE_HPP